ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnexALT Unicode version

Theorem fnexALT 5765
Description: If the domain of a function is a set, the function is a set. Theorem 6.16(1) of [TakeutiZaring] p. 28. This theorem is derived using the Axiom of Replacement in the form of funimaexg 5008. This version of fnex 5409 uses ax-pow 3950 and ax-un 4190, whereas fnex 5409 does not. (Contributed by NM, 14-Aug-1994.) (Proof modification is discouraged.) (New usage is discouraged.)
Assertion
Ref Expression
fnexALT  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )

Proof of Theorem fnexALT
StepHypRef Expression
1 fnrel 5022 . . . 4  |-  ( F  Fn  A  ->  Rel  F )
2 relssdmrn 4865 . . . 4  |-  ( Rel 
F  ->  F  C_  ( dom  F  X.  ran  F
) )
31, 2syl 14 . . 3  |-  ( F  Fn  A  ->  F  C_  ( dom  F  X.  ran  F ) )
43adantr 270 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  C_  ( dom  F  X.  ran  F ) )
5 fndm 5023 . . . . 5  |-  ( F  Fn  A  ->  dom  F  =  A )
65eleq1d 2148 . . . 4  |-  ( F  Fn  A  ->  ( dom  F  e.  B  <->  A  e.  B ) )
76biimpar 291 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  dom  F  e.  B
)
8 fnfun 5021 . . . . 5  |-  ( F  Fn  A  ->  Fun  F )
9 funimaexg 5008 . . . . 5  |-  ( ( Fun  F  /\  A  e.  B )  ->  ( F " A )  e. 
_V )
108, 9sylan 277 . . . 4  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( F " A
)  e.  _V )
11 imadmrn 4702 . . . . . . 7  |-  ( F
" dom  F )  =  ran  F
125imaeq2d 4692 . . . . . . 7  |-  ( F  Fn  A  ->  ( F " dom  F )  =  ( F " A ) )
1311, 12syl5eqr 2128 . . . . . 6  |-  ( F  Fn  A  ->  ran  F  =  ( F " A ) )
1413eleq1d 2148 . . . . 5  |-  ( F  Fn  A  ->  ( ran  F  e.  _V  <->  ( F " A )  e.  _V ) )
1514biimpar 291 . . . 4  |-  ( ( F  Fn  A  /\  ( F " A )  e.  _V )  ->  ran  F  e.  _V )
1610, 15syldan 276 . . 3  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ran  F  e.  _V )
17 xpexg 4474 . . 3  |-  ( ( dom  F  e.  B  /\  ran  F  e.  _V )  ->  ( dom  F  X.  ran  F )  e. 
_V )
187, 16, 17syl2anc 403 . 2  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  ( dom  F  X.  ran  F )  e.  _V )
19 ssexg 3919 . 2  |-  ( ( F  C_  ( dom  F  X.  ran  F )  /\  ( dom  F  X.  ran  F )  e. 
_V )  ->  F  e.  _V )
204, 18, 19syl2anc 403 1  |-  ( ( F  Fn  A  /\  A  e.  B )  ->  F  e.  _V )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    e. wcel 1434   _Vcvv 2602    C_ wss 2974    X. cxp 4363   dom cdm 4365   ran crn 4366   "cima 4368   Rel wrel 4370   Fun wfun 4920    Fn wfn 4921
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-coll 3895  ax-sep 3898  ax-pow 3950  ax-pr 3966  ax-un 4190
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-fun 4928  df-fn 4929
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator