ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnn0ind Unicode version

Theorem fnn0ind 8544
Description: Induction on the integers from  0 to  N inclusive . The first four hypotheses give us the substitution instances we need; the last two are the basis and the induction step. (Contributed by Paul Chapman, 31-Mar-2011.)
Hypotheses
Ref Expression
fnn0ind.1  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
fnn0ind.2  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
fnn0ind.3  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
fnn0ind.4  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
fnn0ind.5  |-  ( N  e.  NN0  ->  ps )
fnn0ind.6  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
Assertion
Ref Expression
fnn0ind  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Distinct variable groups:    x, K    x, N, y    ch, x    ph, y    ps, x    ta, x    th, x
Allowed substitution hints:    ph( x)    ps( y)    ch( y)    th( y)    ta( y)    K( y)

Proof of Theorem fnn0ind
StepHypRef Expression
1 elnn0z 8445 . . . 4  |-  ( K  e.  NN0  <->  ( K  e.  ZZ  /\  0  <_  K ) )
2 nn0z 8452 . . . . . 6  |-  ( N  e.  NN0  ->  N  e.  ZZ )
3 0z 8443 . . . . . . . 8  |-  0  e.  ZZ
4 fnn0ind.1 . . . . . . . . 9  |-  ( x  =  0  ->  ( ph 
<->  ps ) )
5 fnn0ind.2 . . . . . . . . 9  |-  ( x  =  y  ->  ( ph 
<->  ch ) )
6 fnn0ind.3 . . . . . . . . 9  |-  ( x  =  ( y  +  1 )  ->  ( ph 
<->  th ) )
7 fnn0ind.4 . . . . . . . . 9  |-  ( x  =  K  ->  ( ph 
<->  ta ) )
8 elnn0z 8445 . . . . . . . . . . 11  |-  ( N  e.  NN0  <->  ( N  e.  ZZ  /\  0  <_  N ) )
9 fnn0ind.5 . . . . . . . . . . 11  |-  ( N  e.  NN0  ->  ps )
108, 9sylbir 133 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ps )
11103adant1 957 . . . . . . . . 9  |-  ( ( 0  e.  ZZ  /\  N  e.  ZZ  /\  0  <_  N )  ->  ps )
12 zre 8436 . . . . . . . . . . . . . . . 16  |-  ( y  e.  ZZ  ->  y  e.  RR )
13 zre 8436 . . . . . . . . . . . . . . . 16  |-  ( N  e.  ZZ  ->  N  e.  RR )
14 0re 7181 . . . . . . . . . . . . . . . . 17  |-  0  e.  RR
15 lelttr 7266 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <  N
) )
16 ltle 7265 . . . . . . . . . . . . . . . . . . 19  |-  ( ( 0  e.  RR  /\  N  e.  RR )  ->  ( 0  <  N  ->  0  <_  N )
)
17163adant2 958 . . . . . . . . . . . . . . . . . 18  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
0  <  N  ->  0  <_  N ) )
1815, 17syld 44 . . . . . . . . . . . . . . . . 17  |-  ( ( 0  e.  RR  /\  y  e.  RR  /\  N  e.  RR )  ->  (
( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) )
1914, 18mp3an1 1256 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  RR  /\  N  e.  RR )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2012, 13, 19syl2an 283 . . . . . . . . . . . . . . 15  |-  ( ( y  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( 0  <_ 
y  /\  y  <  N )  ->  0  <_  N ) )
2120ex 113 . . . . . . . . . . . . . 14  |-  ( y  e.  ZZ  ->  ( N  e.  ZZ  ->  ( ( 0  <_  y  /\  y  <  N )  ->  0  <_  N
) ) )
2221com23 77 . . . . . . . . . . . . 13  |-  ( y  e.  ZZ  ->  (
( 0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) ) )
23223impib 1137 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  0  <_  N ) )
2423impcom 123 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  0  <_  N
)
25 elnn0z 8445 . . . . . . . . . . . . . . . . 17  |-  ( y  e.  NN0  <->  ( y  e.  ZZ  /\  0  <_ 
y ) )
2625anbi1i 446 . . . . . . . . . . . . . . . 16  |-  ( ( y  e.  NN0  /\  y  <  N )  <->  ( (
y  e.  ZZ  /\  0  <_  y )  /\  y  <  N ) )
27 fnn0ind.6 . . . . . . . . . . . . . . . . 17  |-  ( ( N  e.  NN0  /\  y  e.  NN0  /\  y  <  N )  ->  ( ch  ->  th ) )
28273expb 1140 . . . . . . . . . . . . . . . 16  |-  ( ( N  e.  NN0  /\  ( y  e.  NN0  /\  y  <  N ) )  ->  ( ch  ->  th ) )
298, 26, 28syl2anbr 286 . . . . . . . . . . . . . . 15  |-  ( ( ( N  e.  ZZ  /\  0  <_  N )  /\  ( ( y  e.  ZZ  /\  0  <_ 
y )  /\  y  <  N ) )  -> 
( ch  ->  th )
)
3029expcom 114 . . . . . . . . . . . . . 14  |-  ( ( ( y  e.  ZZ  /\  0  <_  y )  /\  y  <  N )  ->  ( ( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th ) ) )
31303impa 1134 . . . . . . . . . . . . 13  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  (
( N  e.  ZZ  /\  0  <_  N )  ->  ( ch  ->  th )
) )
3231expd 254 . . . . . . . . . . . 12  |-  ( ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N )  ->  ( N  e.  ZZ  ->  ( 0  <_  N  ->  ( ch  ->  th )
) ) )
3332impcom 123 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( 0  <_  N  ->  ( ch  ->  th ) ) )
3424, 33mpd 13 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  ( y  e.  ZZ  /\  0  <_  y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
3534adantll 460 . . . . . . . . 9  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( y  e.  ZZ  /\  0  <_ 
y  /\  y  <  N ) )  ->  ( ch  ->  th ) )
364, 5, 6, 7, 11, 35fzind 8543 . . . . . . . 8  |-  ( ( ( 0  e.  ZZ  /\  N  e.  ZZ )  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N
) )  ->  ta )
373, 36mpanl1 425 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N ) )  ->  ta )
3837expcom 114 . . . . . 6  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  ZZ  ->  ta ) )
392, 38syl5 32 . . . . 5  |-  ( ( K  e.  ZZ  /\  0  <_  K  /\  K  <_  N )  ->  ( N  e.  NN0  ->  ta ) )
40393expa 1139 . . . 4  |-  ( ( ( K  e.  ZZ  /\  0  <_  K )  /\  K  <_  N )  ->  ( N  e. 
NN0  ->  ta ) )
411, 40sylanb 278 . . 3  |-  ( ( K  e.  NN0  /\  K  <_  N )  -> 
( N  e.  NN0  ->  ta ) )
4241impcom 123 . 2  |-  ( ( N  e.  NN0  /\  ( K  e.  NN0  /\  K  <_  N )
)  ->  ta )
43423impb 1135 1  |-  ( ( N  e.  NN0  /\  K  e.  NN0  /\  K  <_  N )  ->  ta )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    /\ w3a 920    = wceq 1285    e. wcel 1434   class class class wbr 3793  (class class class)co 5543   RRcr 7042   0cc0 7043   1c1 7044    + caddc 7046    < clt 7215    <_ cle 7216   NN0cn0 8355   ZZcz 8432
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-addcom 7138  ax-addass 7140  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-0id 7146  ax-rnegex 7147  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-ltadd 7154
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-inn 8107  df-n0 8356  df-z 8433
This theorem is referenced by:  nn0seqcvgd  10567
  Copyright terms: Public domain W3C validator