ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fnressn Unicode version

Theorem fnressn 5606
Description: A function restricted to a singleton. (Contributed by NM, 9-Oct-2004.)
Assertion
Ref Expression
fnressn  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )

Proof of Theorem fnressn
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 sneq 3538 . . . . . 6  |-  ( x  =  B  ->  { x }  =  { B } )
21reseq2d 4819 . . . . 5  |-  ( x  =  B  ->  ( F  |`  { x }
)  =  ( F  |`  { B } ) )
3 fveq2 5421 . . . . . . 7  |-  ( x  =  B  ->  ( F `  x )  =  ( F `  B ) )
4 opeq12 3707 . . . . . . 7  |-  ( ( x  =  B  /\  ( F `  x )  =  ( F `  B ) )  ->  <. x ,  ( F `
 x ) >.  =  <. B ,  ( F `  B )
>. )
53, 4mpdan 417 . . . . . 6  |-  ( x  =  B  ->  <. x ,  ( F `  x ) >.  =  <. B ,  ( F `  B ) >. )
65sneqd 3540 . . . . 5  |-  ( x  =  B  ->  { <. x ,  ( F `  x ) >. }  =  { <. B ,  ( F `  B )
>. } )
72, 6eqeq12d 2154 . . . 4  |-  ( x  =  B  ->  (
( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } 
<->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
87imbi2d 229 . . 3  |-  ( x  =  B  ->  (
( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )  <->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B , 
( F `  B
) >. } ) ) )
9 vex 2689 . . . . . . 7  |-  x  e. 
_V
109snss 3649 . . . . . 6  |-  ( x  e.  A  <->  { x }  C_  A )
11 fnssres 5236 . . . . . 6  |-  ( ( F  Fn  A  /\  { x }  C_  A
)  ->  ( F  |` 
{ x } )  Fn  { x }
)
1210, 11sylan2b 285 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
13 dffn2 5274 . . . . . . 7  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( F  |` 
{ x } ) : { x } --> _V )
149fsn2 5594 . . . . . . 7  |-  ( ( F  |`  { x } ) : {
x } --> _V  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
1513, 14bitri 183 . . . . . 6  |-  ( ( F  |`  { x } )  Fn  {
x }  <->  ( (
( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } ) )
16 vsnid 3557 . . . . . . . . . . 11  |-  x  e. 
{ x }
17 fvres 5445 . . . . . . . . . . 11  |-  ( x  e.  { x }  ->  ( ( F  |`  { x } ) `
 x )  =  ( F `  x
) )
1816, 17ax-mp 5 . . . . . . . . . 10  |-  ( ( F  |`  { x } ) `  x
)  =  ( F `
 x )
1918opeq2i 3709 . . . . . . . . 9  |-  <. x ,  ( ( F  |`  { x } ) `
 x ) >.  =  <. x ,  ( F `  x )
>.
2019sneqi 3539 . . . . . . . 8  |-  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. }  =  { <. x ,  ( F `  x ) >. }
2120eqeq2i 2150 . . . . . . 7  |-  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. }  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } )
22 snssi 3664 . . . . . . . . . 10  |-  ( x  e.  A  ->  { x }  C_  A )
2322, 11sylan2 284 . . . . . . . . 9  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  Fn  {
x } )
24 funfvex 5438 . . . . . . . . . 10  |-  ( ( Fun  ( F  |`  { x } )  /\  x  e.  dom  ( F  |`  { x } ) )  -> 
( ( F  |`  { x } ) `
 x )  e. 
_V )
2524funfni 5223 . . . . . . . . 9  |-  ( ( ( F  |`  { x } )  Fn  {
x }  /\  x  e.  { x } )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2623, 16, 25sylancl 409 . . . . . . . 8  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } ) `
 x )  e. 
_V )
2726biantrurd 303 . . . . . . 7  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } 
<->  ( ( ( F  |`  { x } ) `
 x )  e. 
_V  /\  ( F  |` 
{ x } )  =  { <. x ,  ( ( F  |`  { x } ) `
 x ) >. } ) ) )
2821, 27syl5rbbr 194 . . . . . 6  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( ( ( F  |`  { x } ) `  x
)  e.  _V  /\  ( F  |`  { x } )  =  { <. x ,  ( ( F  |`  { x } ) `  x
) >. } )  <->  ( F  |` 
{ x } )  =  { <. x ,  ( F `  x ) >. } ) )
2915, 28syl5bb 191 . . . . 5  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( ( F  |`  { x } )  Fn  { x }  <->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
3012, 29mpbid 146 . . . 4  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } )
3130expcom 115 . . 3  |-  ( x  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { x } )  =  { <. x ,  ( F `
 x ) >. } ) )
328, 31vtoclga 2752 . 2  |-  ( B  e.  A  ->  ( F  Fn  A  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } ) )
3332impcom 124 1  |-  ( ( F  Fn  A  /\  B  e.  A )  ->  ( F  |`  { B } )  =  { <. B ,  ( F `
 B ) >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071   {csn 3527   <.cop 3530    |` cres 4541    Fn wfn 5118   -->wf 5119   ` cfv 5123
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-reu 2423  df-v 2688  df-sbc 2910  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131
This theorem is referenced by:  fressnfv  5607  fnsnsplitss  5619  fnsnsplitdc  6401  dif1en  6773  fnfi  6825  fseq1p1m1  9874  resunimafz0  10574
  Copyright terms: Public domain W3C validator