ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foco2 Unicode version

Theorem foco2 5344
Description: If a composition of two functions is surjective, then the function on the left is surjective. (Contributed by Jeff Madsen, 16-Jun-2011.)
Assertion
Ref Expression
foco2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B -onto-> C )

Proof of Theorem foco2
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 simp1 939 . 2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B
--> C )
2 foelrn 5343 . . . . . 6  |-  ( ( ( F  o.  G
) : A -onto-> C  /\  y  e.  C
)  ->  E. z  e.  A  y  =  ( ( F  o.  G ) `  z
) )
3 ffvelrn 5326 . . . . . . . . . 10  |-  ( ( G : A --> B  /\  z  e.  A )  ->  ( G `  z
)  e.  B )
43adantll 460 . . . . . . . . 9  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  ( G `  z )  e.  B )
5 fvco3 5270 . . . . . . . . . 10  |-  ( ( G : A --> B  /\  z  e.  A )  ->  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )
65adantll 460 . . . . . . . . 9  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  (
( F  o.  G
) `  z )  =  ( F `  ( G `  z ) ) )
7 fveq2 5203 . . . . . . . . . . 11  |-  ( x  =  ( G `  z )  ->  ( F `  x )  =  ( F `  ( G `  z ) ) )
87eqeq2d 2093 . . . . . . . . . 10  |-  ( x  =  ( G `  z )  ->  (
( ( F  o.  G ) `  z
)  =  ( F `
 x )  <->  ( ( F  o.  G ) `  z )  =  ( F `  ( G `
 z ) ) ) )
98rspcev 2702 . . . . . . . . 9  |-  ( ( ( G `  z
)  e.  B  /\  ( ( F  o.  G ) `  z
)  =  ( F `
 ( G `  z ) ) )  ->  E. x  e.  B  ( ( F  o.  G ) `  z
)  =  ( F `
 x ) )
104, 6, 9syl2anc 403 . . . . . . . 8  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  E. x  e.  B  ( ( F  o.  G ) `  z )  =  ( F `  x ) )
11 eqeq1 2088 . . . . . . . . 9  |-  ( y  =  ( ( F  o.  G ) `  z )  ->  (
y  =  ( F `
 x )  <->  ( ( F  o.  G ) `  z )  =  ( F `  x ) ) )
1211rexbidv 2370 . . . . . . . 8  |-  ( y  =  ( ( F  o.  G ) `  z )  ->  ( E. x  e.  B  y  =  ( F `  x )  <->  E. x  e.  B  ( ( F  o.  G ) `  z )  =  ( F `  x ) ) )
1310, 12syl5ibrcom 155 . . . . . . 7  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  z  e.  A )  ->  (
y  =  ( ( F  o.  G ) `
 z )  ->  E. x  e.  B  y  =  ( F `  x ) ) )
1413rexlimdva 2478 . . . . . 6  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( E. z  e.  A  y  =  ( ( F  o.  G ) `  z
)  ->  E. x  e.  B  y  =  ( F `  x ) ) )
152, 14syl5 32 . . . . 5  |-  ( ( F : B --> C  /\  G : A --> B )  ->  ( ( ( F  o.  G ) : A -onto-> C  /\  y  e.  C )  ->  E. x  e.  B  y  =  ( F `  x ) ) )
1615impl 372 . . . 4  |-  ( ( ( ( F : B
--> C  /\  G : A
--> B )  /\  ( F  o.  G ) : A -onto-> C )  /\  y  e.  C )  ->  E. x  e.  B  y  =  ( F `  x ) )
1716ralrimiva 2435 . . 3  |-  ( ( ( F : B --> C  /\  G : A --> B )  /\  ( F  o.  G ) : A -onto-> C )  ->  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) )
18173impa 1134 . 2  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) )
19 dffo3 5340 . 2  |-  ( F : B -onto-> C  <->  ( F : B --> C  /\  A. y  e.  C  E. x  e.  B  y  =  ( F `  x ) ) )
201, 18, 19sylanbrc 408 1  |-  ( ( F : B --> C  /\  G : A --> B  /\  ( F  o.  G
) : A -onto-> C
)  ->  F : B -onto-> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434   A.wral 2349   E.wrex 2350    o. ccom 4369   -->wf 4922   -onto->wfo 4924   ` cfv 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-pr 3966
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-sbc 2817  df-un 2978  df-in 2980  df-ss 2987  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-opab 3842  df-mpt 3843  df-id 4050  df-xp 4371  df-rel 4372  df-cnv 4373  df-co 4374  df-dm 4375  df-rn 4376  df-res 4377  df-ima 4378  df-iota 4891  df-fun 4928  df-fn 4929  df-f 4930  df-fo 4932  df-fv 4934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator