ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  foeqcnvco Unicode version

Theorem foeqcnvco 5684
Description: Condition for function equality in terms of vanishing of the composition with the converse. EDITORIAL: Is there a relation-algebraic proof of this? (Contributed by Stefan O'Rear, 12-Feb-2015.)
Assertion
Ref Expression
foeqcnvco  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
) )

Proof of Theorem foeqcnvco
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fococnv2 5386 . . . 4  |-  ( F : A -onto-> B  -> 
( F  o.  `' F )  =  (  _I  |`  B )
)
2 cnveq 4708 . . . . . 6  |-  ( F  =  G  ->  `' F  =  `' G
)
32coeq2d 4696 . . . . 5  |-  ( F  =  G  ->  ( F  o.  `' F
)  =  ( F  o.  `' G ) )
43eqeq1d 2146 . . . 4  |-  ( F  =  G  ->  (
( F  o.  `' F )  =  (  _I  |`  B )  <->  ( F  o.  `' G
)  =  (  _I  |`  B ) ) )
51, 4syl5ibcom 154 . . 3  |-  ( F : A -onto-> B  -> 
( F  =  G  ->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
65adantr 274 . 2  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  ->  ( F  o.  `' G )  =  (  _I  |`  B ) ) )
7 fofn 5342 . . . . 5  |-  ( F : A -onto-> B  ->  F  Fn  A )
87ad2antrr 479 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  Fn  A )
9 fofn 5342 . . . . 5  |-  ( G : A -onto-> B  ->  G  Fn  A )
109ad2antlr 480 . . . 4  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  G  Fn  A )
119adantl 275 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  G  Fn  A )
12 fnopfv 5543 . . . . . . . . . . . 12  |-  ( ( G  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( G `
 x ) >.  e.  G )
1311, 12sylan 281 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  <. x ,  ( G `  x ) >.  e.  G
)
149anim1i 338 . . . . . . . . . . . . 13  |-  ( ( G : A -onto-> B  /\  x  e.  A
)  ->  ( G  Fn  A  /\  x  e.  A ) )
1514adantll 467 . . . . . . . . . . . 12  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G  Fn  A  /\  x  e.  A )
)
16 funfvex 5431 . . . . . . . . . . . . . . 15  |-  ( ( Fun  G  /\  x  e.  dom  G )  -> 
( G `  x
)  e.  _V )
1716funfni 5218 . . . . . . . . . . . . . 14  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( G `  x
)  e.  _V )
18 vex 2684 . . . . . . . . . . . . . 14  |-  x  e. 
_V
19 brcnvg 4715 . . . . . . . . . . . . . 14  |-  ( ( ( G `  x
)  e.  _V  /\  x  e.  _V )  ->  ( ( G `  x ) `' G x 
<->  x G ( G `
 x ) ) )
2017, 18, 19sylancl 409 . . . . . . . . . . . . 13  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( G `  x ) `' G x 
<->  x G ( G `
 x ) ) )
21 df-br 3925 . . . . . . . . . . . . 13  |-  ( x G ( G `  x )  <->  <. x ,  ( G `  x
) >.  e.  G )
2220, 21syl6bb 195 . . . . . . . . . . . 12  |-  ( ( G  Fn  A  /\  x  e.  A )  ->  ( ( G `  x ) `' G x 
<-> 
<. x ,  ( G `
 x ) >.  e.  G ) )
2315, 22syl 14 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  (
( G `  x
) `' G x  <->  <. x ,  ( G `
 x ) >.  e.  G ) )
2413, 23mpbird 166 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x ) `' G x )
257adantr 274 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  F  Fn  A )
26 fnopfv 5543 . . . . . . . . . . . 12  |-  ( ( F  Fn  A  /\  x  e.  A )  -> 
<. x ,  ( F `
 x ) >.  e.  F )
2725, 26sylan 281 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  <. x ,  ( F `  x ) >.  e.  F
)
28 df-br 3925 . . . . . . . . . . 11  |-  ( x F ( F `  x )  <->  <. x ,  ( F `  x
) >.  e.  F )
2927, 28sylibr 133 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  x F ( F `  x ) )
30 breq2 3928 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
( G `  x
) `' G y  <-> 
( G `  x
) `' G x ) )
31 breq1 3927 . . . . . . . . . . . 12  |-  ( y  =  x  ->  (
y F ( F `
 x )  <->  x F
( F `  x
) ) )
3230, 31anbi12d 464 . . . . . . . . . . 11  |-  ( y  =  x  ->  (
( ( G `  x ) `' G
y  /\  y F
( F `  x
) )  <->  ( ( G `  x ) `' G x  /\  x F ( F `  x ) ) ) )
3318, 32spcev 2775 . . . . . . . . . 10  |-  ( ( ( G `  x
) `' G x  /\  x F ( F `  x ) )  ->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
3424, 29, 33syl2anc 408 . . . . . . . . 9  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) )
3515, 17syl 14 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )  e.  _V )
367anim1i 338 . . . . . . . . . . . 12  |-  ( ( F : A -onto-> B  /\  x  e.  A
)  ->  ( F  Fn  A  /\  x  e.  A ) )
3736adantlr 468 . . . . . . . . . . 11  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( F  Fn  A  /\  x  e.  A )
)
38 funfvex 5431 . . . . . . . . . . . 12  |-  ( ( Fun  F  /\  x  e.  dom  F )  -> 
( F `  x
)  e.  _V )
3938funfni 5218 . . . . . . . . . . 11  |-  ( ( F  Fn  A  /\  x  e.  A )  ->  ( F `  x
)  e.  _V )
4037, 39syl 14 . . . . . . . . . 10  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( F `  x )  e.  _V )
41 brcog 4701 . . . . . . . . . 10  |-  ( ( ( G `  x
)  e.  _V  /\  ( F `  x )  e.  _V )  -> 
( ( G `  x ) ( F  o.  `' G ) ( F `  x
)  <->  E. y ( ( G `  x ) `' G y  /\  y F ( F `  x ) ) ) )
4235, 40, 41syl2anc 408 . . . . . . . . 9  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  (
( G `  x
) ( F  o.  `' G ) ( F `
 x )  <->  E. y
( ( G `  x ) `' G
y  /\  y F
( F `  x
) ) ) )
4334, 42mpbird 166 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )
( F  o.  `' G ) ( F `
 x ) )
4443adantlr 468 . . . . . . 7  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
) ( F  o.  `' G ) ( F `
 x ) )
45 breq 3926 . . . . . . . 8  |-  ( ( F  o.  `' G
)  =  (  _I  |`  B )  ->  (
( G `  x
) ( F  o.  `' G ) ( F `
 x )  <->  ( G `  x ) (  _I  |`  B ) ( F `
 x ) ) )
4645ad2antlr 480 . . . . . . 7  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( ( G `  x ) ( F  o.  `' G ) ( F `  x
)  <->  ( G `  x ) (  _I  |`  B ) ( F `
 x ) ) )
4744, 46mpbid 146 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
) (  _I  |`  B ) ( F `  x
) )
48 fof 5340 . . . . . . . . . 10  |-  ( G : A -onto-> B  ->  G : A --> B )
4948adantl 275 . . . . . . . . 9  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  G : A
--> B )
5049ffvelrnda 5548 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( G `  x )  e.  B )
51 fof 5340 . . . . . . . . . 10  |-  ( F : A -onto-> B  ->  F : A --> B )
5251adantr 274 . . . . . . . . 9  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  F : A
--> B )
5352ffvelrnda 5548 . . . . . . . 8  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  ( F `  x )  e.  B )
54 resieq 4824 . . . . . . . 8  |-  ( ( ( G `  x
)  e.  B  /\  ( F `  x )  e.  B )  -> 
( ( G `  x ) (  _I  |`  B ) ( F `
 x )  <->  ( G `  x )  =  ( F `  x ) ) )
5550, 53, 54syl2anc 408 . . . . . . 7  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  x  e.  A )  ->  (
( G `  x
) (  _I  |`  B ) ( F `  x
)  <->  ( G `  x )  =  ( F `  x ) ) )
5655adantlr 468 . . . . . 6  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( ( G `  x ) (  _I  |`  B ) ( F `
 x )  <->  ( G `  x )  =  ( F `  x ) ) )
5747, 56mpbid 146 . . . . 5  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( G `  x
)  =  ( F `
 x ) )
5857eqcomd 2143 . . . 4  |-  ( ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  /\  x  e.  A )  ->  ( F `  x
)  =  ( G `
 x ) )
598, 10, 58eqfnfvd 5514 . . 3  |-  ( ( ( F : A -onto-> B  /\  G : A -onto-> B )  /\  ( F  o.  `' G
)  =  (  _I  |`  B ) )  ->  F  =  G )
6059ex 114 . 2  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( ( F  o.  `' G
)  =  (  _I  |`  B )  ->  F  =  G ) )
616, 60impbid 128 1  |-  ( ( F : A -onto-> B  /\  G : A -onto-> B
)  ->  ( F  =  G  <->  ( F  o.  `' G )  =  (  _I  |`  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331   E.wex 1468    e. wcel 1480   _Vcvv 2681   <.cop 3525   class class class wbr 3924    _I cid 4205   `'ccnv 4533    |` cres 4536    o. ccom 4538    Fn wfn 5113   -->wf 5114   -onto->wfo 5116   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-csb 2999  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fo 5124  df-fv 5126
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator