Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fofn Unicode version

Theorem fofn 5139
 Description: An onto mapping is a function on its domain. (Contributed by NM, 16-Dec-2008.)
Assertion
Ref Expression
fofn

Proof of Theorem fofn
StepHypRef Expression
1 fof 5137 . 2
2 ffn 5077 . 2
31, 2syl 14 1
 Colors of variables: wff set class Syntax hints:   wi 4   wfn 4927  wf 4928  wfo 4930 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-11 1438  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064 This theorem depends on definitions:  df-bi 115  df-nf 1391  df-sb 1687  df-clab 2069  df-cleq 2075  df-clel 2078  df-in 2980  df-ss 2987  df-f 4936  df-fo 4938 This theorem is referenced by:  fodmrnu  5145  foun  5176  fo00  5193  cbvfo  5456  cbvexfo  5457  foeqcnvco  5461  1stcof  5821  2ndcof  5822  1stexg  5825  2ndexg  5826  df1st2  5871  df2nd2  5872  1stconst  5873  2ndconst  5874
 Copyright terms: Public domain W3C validator