ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frec2uzzd Unicode version

Theorem frec2uzzd 9534
Description: The value of  G (see frec2uz0d 9533) is an integer. (Contributed by Jim Kingdon, 16-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frec2uzzd.a  |-  ( ph  ->  A  e.  om )
Assertion
Ref Expression
frec2uzzd  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Distinct variable group:    x, C
Allowed substitution hints:    ph( x)    A( x)    G( x)

Proof of Theorem frec2uzzd
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 frec2uz.2 . . 3  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
21fveq1i 5230 . 2  |-  ( G `
 A )  =  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )
3 frec2uz.1 . . 3  |-  ( ph  ->  C  e.  ZZ )
4 simpr 108 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  k  e.  ZZ )
54peano2zd 8605 . . . . 5  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( k  +  1 )  e.  ZZ )
6 oveq1 5570 . . . . . 6  |-  ( x  =  k  ->  (
x  +  1 )  =  ( k  +  1 ) )
7 eqid 2083 . . . . . 6  |-  ( x  e.  ZZ  |->  ( x  +  1 ) )  =  ( x  e.  ZZ  |->  ( x  + 
1 ) )
86, 7fvmptg 5300 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( k  +  1 )  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `
 k )  =  ( k  +  1 ) )
94, 5, 8syl2anc 403 . . . 4  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  =  ( k  +  1 ) )
109, 5eqeltrd 2159 . . 3  |-  ( (
ph  /\  k  e.  ZZ )  ->  ( ( x  e.  ZZ  |->  ( x  +  1 ) ) `  k )  e.  ZZ )
11 frec2uzzd.a . . 3  |-  ( ph  ->  A  e.  om )
123, 10, 11freccl 6072 . 2  |-  ( ph  ->  (frec ( ( x  e.  ZZ  |->  ( x  +  1 ) ) ,  C ) `  A )  e.  ZZ )
132, 12syl5eqel 2169 1  |-  ( ph  ->  ( G `  A
)  e.  ZZ )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434    |-> cmpt 3859   omcom 4359   ` cfv 4952  (class class class)co 5563  freccfrec 6059   1c1 7096    + caddc 7098   ZZcz 8484
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7181  ax-resscn 7182  ax-1cn 7183  ax-1re 7184  ax-icn 7185  ax-addcl 7186  ax-addrcl 7187  ax-mulcl 7188  ax-addcom 7190  ax-addass 7192  ax-distr 7194  ax-i2m1 7195  ax-0id 7198  ax-rnegex 7199  ax-cnre 7201
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5519  df-ov 5566  df-oprab 5567  df-mpt2 5568  df-recs 5974  df-frec 6060  df-sub 7400  df-neg 7401  df-inn 8159  df-n0 8408  df-z 8485
This theorem is referenced by:  frec2uzsucd  9535  frec2uzltd  9537  frec2uzlt2d  9538  frec2uzf1od  9540  frec2uzrdg  9543  frec2uzled  9563
  Copyright terms: Public domain W3C validator