ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecsuc Unicode version

Theorem frecsuc 6304
Description: The successor value resulting from finite recursive definition generation. (Contributed by Jim Kingdon, 31-Mar-2022.)
Assertion
Ref Expression
frecsuc  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Distinct variable groups:    z, F    z, S
Allowed substitution hints:    A( z)    B( z)

Proof of Theorem frecsuc
Dummy variables  f  g  m  x  y  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 dmeq 4739 . . . . . . . . 9  |-  ( f  =  g  ->  dom  f  =  dom  g )
21eqeq1d 2148 . . . . . . . 8  |-  ( f  =  g  ->  ( dom  f  =  suc  n 
<->  dom  g  =  suc  n ) )
3 fveq1 5420 . . . . . . . . . 10  |-  ( f  =  g  ->  (
f `  n )  =  ( g `  n ) )
43fveq2d 5425 . . . . . . . . 9  |-  ( f  =  g  ->  ( F `  ( f `  n ) )  =  ( F `  (
g `  n )
) )
54eleq2d 2209 . . . . . . . 8  |-  ( f  =  g  ->  (
y  e.  ( F `
 ( f `  n ) )  <->  y  e.  ( F `  ( g `
 n ) ) ) )
62, 5anbi12d 464 . . . . . . 7  |-  ( f  =  g  ->  (
( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  <->  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `  n
) ) ) ) )
76rexbidv 2438 . . . . . 6  |-  ( f  =  g  ->  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  ( f `
 n ) ) )  <->  E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) ) ) )
81eqeq1d 2148 . . . . . . 7  |-  ( f  =  g  ->  ( dom  f  =  (/)  <->  dom  g  =  (/) ) )
98anbi1d 460 . . . . . 6  |-  ( f  =  g  ->  (
( dom  f  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  y  e.  A ) ) )
107, 9orbi12d 782 . . . . 5  |-  ( f  =  g  ->  (
( E. n  e. 
om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) )  <->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) ) )
1110abbidv 2257 . . . 4  |-  ( f  =  g  ->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) }  =  { y  |  ( E. n  e. 
om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
1211cbvmptv 4024 . . 3  |-  ( f  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )
13 eleq1 2202 . . . . . . . 8  |-  ( y  =  x  ->  (
y  e.  ( F `
 ( g `  n ) )  <->  x  e.  ( F `  ( g `
 n ) ) ) )
1413anbi2d 459 . . . . . . 7  |-  ( y  =  x  ->  (
( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  <->  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `  n
) ) ) ) )
1514rexbidv 2438 . . . . . 6  |-  ( y  =  x  ->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  ( g `
 n ) ) )  <->  E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) ) ) )
16 eleq1 2202 . . . . . . 7  |-  ( y  =  x  ->  (
y  e.  A  <->  x  e.  A ) )
1716anbi2d 459 . . . . . 6  |-  ( y  =  x  ->  (
( dom  g  =  (/) 
/\  y  e.  A
)  <->  ( dom  g  =  (/)  /\  x  e.  A ) ) )
1815, 17orbi12d 782 . . . . 5  |-  ( y  =  x  ->  (
( E. n  e. 
om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) )  <->  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) ) )
1918cbvabv 2264 . . . 4  |-  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) }  =  { x  |  ( E. n  e. 
om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }
2019mpteq2i 4015 . . 3  |-  ( g  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  y  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
21 suceq 4324 . . . . . . . . 9  |-  ( n  =  m  ->  suc  n  =  suc  m )
2221eqeq2d 2151 . . . . . . . 8  |-  ( n  =  m  ->  ( dom  g  =  suc  n 
<->  dom  g  =  suc  m ) )
23 fveq2 5421 . . . . . . . . . 10  |-  ( n  =  m  ->  (
g `  n )  =  ( g `  m ) )
2423fveq2d 5425 . . . . . . . . 9  |-  ( n  =  m  ->  ( F `  ( g `  n ) )  =  ( F `  (
g `  m )
) )
2524eleq2d 2209 . . . . . . . 8  |-  ( n  =  m  ->  (
x  e.  ( F `
 ( g `  n ) )  <->  x  e.  ( F `  ( g `
 m ) ) ) )
2622, 25anbi12d 464 . . . . . . 7  |-  ( n  =  m  ->  (
( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  <->  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `  m
) ) ) ) )
2726cbvrexv 2655 . . . . . 6  |-  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  <->  E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) ) )
2827orbi1i 752 . . . . 5  |-  ( ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  ( g `
 n ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) )  <->  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  ( g `
 m ) ) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) )
2928abbii 2255 . . . 4  |-  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }  =  { x  |  ( E. m  e. 
om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) }
3029mpteq2i 4015 . . 3  |-  ( g  e.  _V  |->  { x  |  ( E. n  e.  om  ( dom  g  =  suc  n  /\  x  e.  ( F `  (
g `  n )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3112, 20, 303eqtri 2164 . 2  |-  ( f  e.  _V  |->  { y  |  ( E. n  e.  om  ( dom  f  =  suc  n  /\  y  e.  ( F `  (
f `  n )
) )  \/  ( dom  f  =  (/)  /\  y  e.  A ) ) } )  =  ( g  e.  _V  |->  { x  |  ( E. m  e.  om  ( dom  g  =  suc  m  /\  x  e.  ( F `  (
g `  m )
) )  \/  ( dom  g  =  (/)  /\  x  e.  A ) ) } )
3231frecsuclem 6303 1  |-  ( ( A. z  e.  S  ( F `  z )  e.  S  /\  A  e.  S  /\  B  e. 
om )  ->  (frec ( F ,  A ) `
 suc  B )  =  ( F `  (frec ( F ,  A
) `  B )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    \/ wo 697    /\ w3a 962    = wceq 1331    e. wcel 1480   {cab 2125   A.wral 2416   E.wrex 2417   _Vcvv 2686   (/)c0 3363    |-> cmpt 3989   suc csuc 4287   omcom 4504   dom cdm 4539   ` cfv 5123  freccfrec 6287
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-recs 6202  df-frec 6288
This theorem is referenced by:  frecrdg  6305  frec2uzsucd  10174  frec2uzrdg  10182  frecuzrdgsuc  10187  frecuzrdgg  10189  frecuzrdgsuctlem  10196  seq3val  10231  seqvalcd  10232
  Copyright terms: Public domain W3C validator