ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0 Unicode version

Theorem frecuzrdg0 9565
Description: Initial value of a recursive definition generator on upper integers. See comment in frec2uz0d 9551 for the description of  G as the mapping from  om to  ( ZZ>= `  C
). (Contributed by Jim Kingdon, 27-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtcl.3  |-  ( ph  ->  T  =  ran  R
)
Assertion
Ref Expression
frecuzrdg0  |-  ( ph  ->  ( T `  C
)  =  A )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y
Allowed substitution hints:    A( x)    R( x, y)    T( x, y)    G( x)

Proof of Theorem frecuzrdg0
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frecuzrdgrrn.a . . . 4  |-  ( ph  ->  A  e.  S )
4 frecuzrdgrrn.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrrn.2 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 frecuzrdgtcl.3 . . . 4  |-  ( ph  ->  T  =  ran  R
)
71, 2, 3, 4, 5, 6frecuzrdgtcl 9564 . . 3  |-  ( ph  ->  T : ( ZZ>= `  C ) --> S )
8 ffun 5099 . . 3  |-  ( T : ( ZZ>= `  C
) --> S  ->  Fun  T )
97, 8syl 14 . 2  |-  ( ph  ->  Fun  T )
105fveq1i 5231 . . . . 5  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
11 opexg 4011 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
121, 3, 11syl2anc 403 . . . . . 6  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
13 frec0g 6067 . . . . . 6  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  S  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1510, 14syl5eq 2127 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
161, 2, 3, 4, 5frecuzrdgrcl 9562 . . . . . 6  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
17 ffn 5097 . . . . . 6  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1816, 17syl 14 . . . . 5  |-  ( ph  ->  R  Fn  om )
19 peano1 4363 . . . . 5  |-  (/)  e.  om
20 fnfvelrn 5352 . . . . 5  |-  ( ( R  Fn  om  /\  (/) 
e.  om )  ->  ( R `  (/) )  e. 
ran  R )
2118, 19, 20sylancl 404 . . . 4  |-  ( ph  ->  ( R `  (/) )  e. 
ran  R )
2215, 21eqeltrrd 2160 . . 3  |-  ( ph  -> 
<. C ,  A >.  e. 
ran  R )
2322, 6eleqtrrd 2162 . 2  |-  ( ph  -> 
<. C ,  A >.  e.  T )
24 funopfv 5266 . 2  |-  ( Fun 
T  ->  ( <. C ,  A >.  e.  T  ->  ( T `  C
)  =  A ) )
259, 23, 24sylc 61 1  |-  ( ph  ->  ( T `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   _Vcvv 2610   (/)c0 3267   <.cop 3419    |-> cmpt 3859   omcom 4359    X. cxp 4389   ran crn 4392   Fun wfun 4946    Fn wfn 4947   -->wf 4948   ` cfv 4952  (class class class)co 5564    |-> cmpt2 5566  freccfrec 6060   1c1 7114    + caddc 7116   ZZcz 8502   ZZ>=cuz 8770
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3913  ax-sep 3916  ax-nul 3924  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-iinf 4357  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-addass 7210  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-ltadd 7224
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-csb 2918  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-iun 3700  df-br 3806  df-opab 3860  df-mpt 3861  df-tr 3896  df-id 4076  df-iord 4149  df-on 4151  df-ilim 4152  df-suc 4154  df-iom 4360  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-f1 4957  df-fo 4958  df-f1o 4959  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-inn 8177  df-n0 8426  df-z 8503  df-uz 8771
This theorem is referenced by:  iseq1  9603
  Copyright terms: Public domain W3C validator