ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdg0t Unicode version

Theorem frecuzrdg0t 10195
Description: Initial value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 28-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdg0t.ran  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdg0t  |-  ( ph  ->  ( P `  C
)  =  A )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdg0t
StepHypRef Expression
1 frecuzrdgrclt.c . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . 4  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . 4  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
6 frecuzrdg0t.ran . . . 4  |-  ( ph  ->  P  =  ran  R
)
71, 2, 3, 4, 5, 6frecuzrdgtclt 10194 . . 3  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
8 ffun 5275 . . 3  |-  ( P : ( ZZ>= `  C
) --> S  ->  Fun  P )
97, 8syl 14 . 2  |-  ( ph  ->  Fun  P )
105fveq1i 5422 . . . . 5  |-  ( R `
 (/) )  =  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. ) `  (/) )
11 opexg 4150 . . . . . . 7  |-  ( ( C  e.  ZZ  /\  A  e.  S )  -> 
<. C ,  A >.  e. 
_V )
121, 2, 11syl2anc 408 . . . . . 6  |-  ( ph  -> 
<. C ,  A >.  e. 
_V )
13 frec0g 6294 . . . . . 6  |-  ( <. C ,  A >.  e. 
_V  ->  (frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |->  <. (
x  +  1 ) ,  ( x F y ) >. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1412, 13syl 14 . . . . 5  |-  ( ph  ->  (frec ( ( x  e.  ( ZZ>= `  C
) ,  y  e.  T  |->  <. ( x  + 
1 ) ,  ( x F y )
>. ) ,  <. C ,  A >. ) `  (/) )  = 
<. C ,  A >. )
1510, 14syl5eq 2184 . . . 4  |-  ( ph  ->  ( R `  (/) )  = 
<. C ,  A >. )
161, 2, 3, 4, 5frecuzrdgrclt 10188 . . . . . 6  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
17 ffn 5272 . . . . . 6  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1816, 17syl 14 . . . . 5  |-  ( ph  ->  R  Fn  om )
19 peano1 4508 . . . . 5  |-  (/)  e.  om
20 fnfvelrn 5552 . . . . 5  |-  ( ( R  Fn  om  /\  (/) 
e.  om )  ->  ( R `  (/) )  e. 
ran  R )
2118, 19, 20sylancl 409 . . . 4  |-  ( ph  ->  ( R `  (/) )  e. 
ran  R )
2215, 21eqeltrrd 2217 . . 3  |-  ( ph  -> 
<. C ,  A >.  e. 
ran  R )
2322, 6eleqtrrd 2219 . 2  |-  ( ph  -> 
<. C ,  A >.  e.  P )
24 funopfv 5461 . 2  |-  ( Fun 
P  ->  ( <. C ,  A >.  e.  P  ->  ( P `  C
)  =  A ) )
259, 23, 24sylc 62 1  |-  ( ph  ->  ( P `  C
)  =  A )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   _Vcvv 2686    C_ wss 3071   (/)c0 3363   <.cop 3530   omcom 4504    X. cxp 4537   ran crn 4540   Fun wfun 5117    Fn wfn 5118   -->wf 5119   ` cfv 5123  (class class class)co 5774    e. cmpo 5776  freccfrec 6287   1c1 7621    + caddc 7623   ZZcz 9054   ZZ>=cuz 9326
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-n0 8978  df-z 9055  df-uz 9327
This theorem is referenced by:  seq3-1  10233  seq1cd  10238
  Copyright terms: Public domain W3C validator