ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdglem Unicode version

Theorem frecuzrdglem 10152
Description: A helper lemma for the value of a recursive definition generator on upper integers. (Contributed by Jim Kingdon, 26-May-2020.)
Hypotheses
Ref Expression
frec2uz.1  |-  ( ph  ->  C  e.  ZZ )
frec2uz.2  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
frecuzrdgrrn.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrrn.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrrn.2  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdglem.b  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
Assertion
Ref Expression
frecuzrdglem  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Distinct variable groups:    y, A    x, C, y    y, G    x, F, y    x, S, y    ph, x, y    x, B, y
Allowed substitution hints:    A( x)    R( x, y)    G( x)

Proof of Theorem frecuzrdglem
StepHypRef Expression
1 frec2uz.1 . . . 4  |-  ( ph  ->  C  e.  ZZ )
2 frec2uz.2 . . . 4  |-  G  = frec ( ( x  e.  ZZ  |->  ( x  + 
1 ) ) ,  C )
3 frecuzrdgrrn.a . . . 4  |-  ( ph  ->  A  e.  S )
4 frecuzrdgrrn.f . . . 4  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrrn.2 . . . 4  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  S  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2frec2uzf1od 10147 . . . . 5  |-  ( ph  ->  G : om -1-1-onto-> ( ZZ>= `  C )
)
7 frecuzrdglem.b . . . . 5  |-  ( ph  ->  B  e.  ( ZZ>= `  C ) )
8 f1ocnvdm 5650 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( `' G `  B )  e.  om )
96, 7, 8syl2anc 408 . . . 4  |-  ( ph  ->  ( `' G `  B )  e.  om )
101, 2, 3, 4, 5, 9frec2uzrdg 10150 . . 3  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. ( G `  ( `' G `  B )
) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >. )
11 f1ocnvfv2 5647 . . . . 5  |-  ( ( G : om -1-1-onto-> ( ZZ>= `  C )  /\  B  e.  ( ZZ>=
`  C ) )  ->  ( G `  ( `' G `  B ) )  =  B )
126, 7, 11syl2anc 408 . . . 4  |-  ( ph  ->  ( G `  ( `' G `  B ) )  =  B )
1312opeq1d 3681 . . 3  |-  ( ph  -> 
<. ( G `  ( `' G `  B ) ) ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  =  <. B ,  ( 2nd `  ( R `  ( `' G `  B )
) ) >. )
1410, 13eqtrd 2150 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  =  <. B , 
( 2nd `  ( R `  ( `' G `  B )
) ) >. )
151, 2, 3, 4, 5frecuzrdgrcl 10151 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 ffn 5242 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  R  Fn  om )
1715, 16syl 14 . . 3  |-  ( ph  ->  R  Fn  om )
18 fnfvelrn 5520 . . 3  |-  ( ( R  Fn  om  /\  ( `' G `  B )  e.  om )  -> 
( R `  ( `' G `  B ) )  e.  ran  R
)
1917, 9, 18syl2anc 408 . 2  |-  ( ph  ->  ( R `  ( `' G `  B ) )  e.  ran  R
)
2014, 19eqeltrrd 2195 1  |-  ( ph  -> 
<. B ,  ( 2nd `  ( R `  ( `' G `  B ) ) ) >.  e.  ran  R )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1316    e. wcel 1465   <.cop 3500    |-> cmpt 3959   omcom 4474    X. cxp 4507   `'ccnv 4508   ran crn 4510    Fn wfn 5088   -->wf 5089   -1-1-onto->wf1o 5092   ` cfv 5093  (class class class)co 5742    e. cmpo 5744   2ndc2nd 6005  freccfrec 6255   1c1 7589    + caddc 7591   ZZcz 9022   ZZ>=cuz 9294
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-coll 4013  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-iinf 4472  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-tr 3997  df-id 4185  df-iord 4258  df-on 4260  df-ilim 4261  df-suc 4263  df-iom 4475  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-f1 5098  df-fo 5099  df-f1o 5100  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-recs 6170  df-frec 6256  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295
This theorem is referenced by:  frecuzrdgtcl  10153  frecuzrdgsuc  10155
  Copyright terms: Public domain W3C validator