ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  frecuzrdgtclt Unicode version

Theorem frecuzrdgtclt 9539
Description: The recursive definition generator on upper integers is a function. (Contributed by Jim Kingdon, 22-Apr-2022.)
Hypotheses
Ref Expression
frecuzrdgrclt.c  |-  ( ph  ->  C  e.  ZZ )
frecuzrdgrclt.a  |-  ( ph  ->  A  e.  S )
frecuzrdgrclt.t  |-  ( ph  ->  S  C_  T )
frecuzrdgrclt.f  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
frecuzrdgrclt.r  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
frecuzrdgtclt.3  |-  ( ph  ->  P  =  ran  R
)
Assertion
Ref Expression
frecuzrdgtclt  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Distinct variable groups:    x, C, y   
x, F, y    x, S, y    x, T, y    ph, x, y    x, R, y
Allowed substitution hints:    A( x, y)    P( x, y)

Proof of Theorem frecuzrdgtclt
StepHypRef Expression
1 frecuzrdgrclt.c . . . . 5  |-  ( ph  ->  C  e.  ZZ )
2 frecuzrdgrclt.a . . . . 5  |-  ( ph  ->  A  e.  S )
3 frecuzrdgrclt.t . . . . 5  |-  ( ph  ->  S  C_  T )
4 frecuzrdgrclt.f . . . . 5  |-  ( (
ph  /\  ( x  e.  ( ZZ>= `  C )  /\  y  e.  S
) )  ->  (
x F y )  e.  S )
5 frecuzrdgrclt.r . . . . 5  |-  R  = frec ( ( x  e.  ( ZZ>= `  C ) ,  y  e.  T  |-> 
<. ( x  +  1 ) ,  ( x F y ) >.
) ,  <. C ,  A >. )
61, 2, 3, 4, 5frecuzrdgfun 9538 . . . 4  |-  ( ph  ->  Fun  ran  R )
7 frecuzrdgtclt.3 . . . . 5  |-  ( ph  ->  P  =  ran  R
)
87funeqd 4974 . . . 4  |-  ( ph  ->  ( Fun  P  <->  Fun  ran  R
) )
96, 8mpbird 165 . . 3  |-  ( ph  ->  Fun  P )
107dmeqd 4586 . . . 4  |-  ( ph  ->  dom  P  =  dom  ran 
R )
111, 2, 3, 4, 5frecuzrdgdom 9536 . . . 4  |-  ( ph  ->  dom  ran  R  =  ( ZZ>= `  C )
)
1210, 11eqtrd 2115 . . 3  |-  ( ph  ->  dom  P  =  (
ZZ>= `  C ) )
13 df-fn 4956 . . 3  |-  ( P  Fn  ( ZZ>= `  C
)  <->  ( Fun  P  /\  dom  P  =  (
ZZ>= `  C ) ) )
149, 12, 13sylanbrc 408 . 2  |-  ( ph  ->  P  Fn  ( ZZ>= `  C ) )
151, 2, 3, 4, 5frecuzrdgrclt 9533 . . . 4  |-  ( ph  ->  R : om --> ( (
ZZ>= `  C )  X.  S ) )
16 frn 5104 . . . 4  |-  ( R : om --> ( (
ZZ>= `  C )  X.  S )  ->  ran  R 
C_  ( ( ZZ>= `  C )  X.  S
) )
1715, 16syl 14 . . 3  |-  ( ph  ->  ran  R  C_  (
( ZZ>= `  C )  X.  S ) )
187, 17eqsstrd 3043 . 2  |-  ( ph  ->  P  C_  ( ( ZZ>=
`  C )  X.  S ) )
19 dff2 5364 . 2  |-  ( P : ( ZZ>= `  C
) --> S  <->  ( P  Fn  ( ZZ>= `  C )  /\  P  C_  ( (
ZZ>= `  C )  X.  S ) ) )
2014, 18, 19sylanbrc 408 1  |-  ( ph  ->  P : ( ZZ>= `  C ) --> S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434    C_ wss 2983   <.cop 3420   omcom 4360    X. cxp 4390   dom cdm 4392   ran crn 4393   Fun wfun 4947    Fn wfn 4948   -->wf 4949   ` cfv 4953  (class class class)co 5564    |-> cmpt2 5566  freccfrec 6060   1c1 7080    + caddc 7082   ZZcz 8468   ZZ>=cuz 8736
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-coll 3914  ax-sep 3917  ax-nul 3925  ax-pow 3969  ax-pr 3993  ax-un 4217  ax-setind 4309  ax-iinf 4358  ax-cnex 7165  ax-resscn 7166  ax-1cn 7167  ax-1re 7168  ax-icn 7169  ax-addcl 7170  ax-addrcl 7171  ax-mulcl 7172  ax-addcom 7174  ax-addass 7176  ax-distr 7178  ax-i2m1 7179  ax-0lt1 7180  ax-0id 7182  ax-rnegex 7183  ax-cnre 7185  ax-pre-ltirr 7186  ax-pre-ltwlin 7187  ax-pre-lttrn 7188  ax-pre-ltadd 7190
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2826  df-csb 2919  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-uni 3623  df-int 3658  df-iun 3701  df-br 3807  df-opab 3861  df-mpt 3862  df-tr 3897  df-id 4077  df-iord 4150  df-on 4152  df-ilim 4153  df-suc 4155  df-iom 4361  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-res 4404  df-ima 4405  df-iota 4918  df-fun 4955  df-fn 4956  df-f 4957  df-f1 4958  df-fo 4959  df-f1o 4960  df-fv 4961  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-1st 5819  df-2nd 5820  df-recs 5975  df-frec 6061  df-pnf 7253  df-mnf 7254  df-xr 7255  df-ltxr 7256  df-le 7257  df-sub 7384  df-neg 7385  df-inn 8143  df-n0 8392  df-z 8469  df-uz 8737
This theorem is referenced by:  frecuzrdg0t  9540  frecuzrdgsuctlem  9541  iseqfclt  9572
  Copyright terms: Public domain W3C validator