Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  freq2 Unicode version

Theorem freq2 4130
 Description: Equality theorem for the well-founded predicate. (Contributed by NM, 3-Apr-1994.)
Assertion
Ref Expression
freq2

Proof of Theorem freq2
Dummy variable is distinct from all other variables.
StepHypRef Expression
1 frforeq2 4129 . . 3 FrFor FrFor
21albidv 1747 . 2 FrFor FrFor
3 df-frind 4116 . 2 FrFor
4 df-frind 4116 . 2 FrFor
52, 3, 43bitr4g 221 1
 Colors of variables: wff set class Syntax hints:   wi 4   wb 103  wal 1283   wceq 1285  FrFor wfrfor 4111   wfr 4112 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065 This theorem depends on definitions:  df-bi 115  df-tru 1288  df-nf 1391  df-sb 1688  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-in 2989  df-ss 2996  df-frfor 4115  df-frind 4116 This theorem is referenced by:  weeq2  4141
 Copyright terms: Public domain W3C validator