ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsn Unicode version

Theorem fsn 5363
Description: A function maps a singleton to a singleton iff it is the singleton of an ordered pair. (Contributed by NM, 10-Dec-2003.)
Hypotheses
Ref Expression
fsn.1  |-  A  e. 
_V
fsn.2  |-  B  e. 
_V
Assertion
Ref Expression
fsn  |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )

Proof of Theorem fsn
Dummy variables  x  y are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 opelf 5090 . . . . . . . 8  |-  ( ( F : { A }
--> { B }  /\  <.
x ,  y >.  e.  F )  ->  (
x  e.  { A }  /\  y  e.  { B } ) )
2 velsn 3420 . . . . . . . . 9  |-  ( x  e.  { A }  <->  x  =  A )
3 velsn 3420 . . . . . . . . 9  |-  ( y  e.  { B }  <->  y  =  B )
42, 3anbi12i 441 . . . . . . . 8  |-  ( ( x  e.  { A }  /\  y  e.  { B } )  <->  ( x  =  A  /\  y  =  B ) )
51, 4sylib 131 . . . . . . 7  |-  ( ( F : { A }
--> { B }  /\  <.
x ,  y >.  e.  F )  ->  (
x  =  A  /\  y  =  B )
)
65ex 112 . . . . . 6  |-  ( F : { A } --> { B }  ->  ( <. x ,  y >.  e.  F  ->  ( x  =  A  /\  y  =  B ) ) )
7 fsn.1 . . . . . . . . . 10  |-  A  e. 
_V
87snid 3430 . . . . . . . . 9  |-  A  e. 
{ A }
9 feu 5100 . . . . . . . . 9  |-  ( ( F : { A }
--> { B }  /\  A  e.  { A } )  ->  E! y  e.  { B } <. A ,  y
>.  e.  F )
108, 9mpan2 409 . . . . . . . 8  |-  ( F : { A } --> { B }  ->  E! y  e.  { B } <. A ,  y
>.  e.  F )
113anbi1i 439 . . . . . . . . . . 11  |-  ( ( y  e.  { B }  /\  <. A ,  y
>.  e.  F )  <->  ( y  =  B  /\  <. A , 
y >.  e.  F ) )
12 opeq2 3578 . . . . . . . . . . . . . 14  |-  ( y  =  B  ->  <. A , 
y >.  =  <. A ,  B >. )
1312eleq1d 2122 . . . . . . . . . . . . 13  |-  ( y  =  B  ->  ( <. A ,  y >.  e.  F  <->  <. A ,  B >.  e.  F ) )
1413pm5.32i 435 . . . . . . . . . . . 12  |-  ( ( y  =  B  /\  <. A ,  y >.  e.  F )  <->  ( y  =  B  /\  <. A ,  B >.  e.  F ) )
15 ancom 257 . . . . . . . . . . . 12  |-  ( (
<. A ,  B >.  e.  F  /\  y  =  B )  <->  ( y  =  B  /\  <. A ,  B >.  e.  F ) )
1614, 15bitr4i 180 . . . . . . . . . . 11  |-  ( ( y  =  B  /\  <. A ,  y >.  e.  F )  <->  ( <. A ,  B >.  e.  F  /\  y  =  B
) )
1711, 16bitr2i 178 . . . . . . . . . 10  |-  ( (
<. A ,  B >.  e.  F  /\  y  =  B )  <->  ( y  e.  { B }  /\  <. A ,  y >.  e.  F ) )
1817eubii 1925 . . . . . . . . 9  |-  ( E! y ( <. A ,  B >.  e.  F  /\  y  =  B )  <->  E! y ( y  e. 
{ B }  /\  <. A ,  y >.  e.  F ) )
19 fsn.2 . . . . . . . . . . . 12  |-  B  e. 
_V
2019eueq1 2736 . . . . . . . . . . 11  |-  E! y  y  =  B
2120biantru 290 . . . . . . . . . 10  |-  ( <. A ,  B >.  e.  F  <->  ( <. A ,  B >.  e.  F  /\  E! y  y  =  B ) )
22 euanv 1973 . . . . . . . . . 10  |-  ( E! y ( <. A ,  B >.  e.  F  /\  y  =  B )  <->  (
<. A ,  B >.  e.  F  /\  E! y  y  =  B ) )
2321, 22bitr4i 180 . . . . . . . . 9  |-  ( <. A ,  B >.  e.  F  <->  E! y ( <. A ,  B >.  e.  F  /\  y  =  B ) )
24 df-reu 2330 . . . . . . . . 9  |-  ( E! y  e.  { B } <. A ,  y
>.  e.  F  <->  E! y
( y  e.  { B }  /\  <. A , 
y >.  e.  F ) )
2518, 23, 243bitr4i 205 . . . . . . . 8  |-  ( <. A ,  B >.  e.  F  <->  E! y  e.  { B } <. A ,  y
>.  e.  F )
2610, 25sylibr 141 . . . . . . 7  |-  ( F : { A } --> { B }  ->  <. A ,  B >.  e.  F )
27 opeq12 3579 . . . . . . . 8  |-  ( ( x  =  A  /\  y  =  B )  -> 
<. x ,  y >.  =  <. A ,  B >. )
2827eleq1d 2122 . . . . . . 7  |-  ( ( x  =  A  /\  y  =  B )  ->  ( <. x ,  y
>.  e.  F  <->  <. A ,  B >.  e.  F ) )
2926, 28syl5ibrcom 150 . . . . . 6  |-  ( F : { A } --> { B }  ->  (
( x  =  A  /\  y  =  B )  ->  <. x ,  y >.  e.  F
) )
306, 29impbid 124 . . . . 5  |-  ( F : { A } --> { B }  ->  ( <. x ,  y >.  e.  F  <->  ( x  =  A  /\  y  =  B ) ) )
31 vex 2577 . . . . . . . 8  |-  x  e. 
_V
32 vex 2577 . . . . . . . 8  |-  y  e. 
_V
3331, 32opex 3994 . . . . . . 7  |-  <. x ,  y >.  e.  _V
3433elsn 3419 . . . . . 6  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  <->  <. x ,  y
>.  =  <. A ,  B >. )
357, 19opth2 4005 . . . . . 6  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
3634, 35bitr2i 178 . . . . 5  |-  ( ( x  =  A  /\  y  =  B )  <->  <.
x ,  y >.  e.  { <. A ,  B >. } )
3730, 36syl6bb 189 . . . 4  |-  ( F : { A } --> { B }  ->  ( <. x ,  y >.  e.  F  <->  <. x ,  y
>.  e.  { <. A ,  B >. } ) )
3837alrimivv 1771 . . 3  |-  ( F : { A } --> { B }  ->  A. x A. y ( <. x ,  y >.  e.  F  <->  <.
x ,  y >.  e.  { <. A ,  B >. } ) )
39 frel 5077 . . . 4  |-  ( F : { A } --> { B }  ->  Rel  F )
407, 19relsnop 4472 . . . 4  |-  Rel  { <. A ,  B >. }
41 eqrel 4457 . . . 4  |-  ( ( Rel  F  /\  Rel  {
<. A ,  B >. } )  ->  ( F  =  { <. A ,  B >. }  <->  A. x A. y
( <. x ,  y
>.  e.  F  <->  <. x ,  y >.  e.  { <. A ,  B >. } ) ) )
4239, 40, 41sylancl 398 . . 3  |-  ( F : { A } --> { B }  ->  ( F  =  { <. A ,  B >. }  <->  A. x A. y ( <. x ,  y >.  e.  F  <->  <.
x ,  y >.  e.  { <. A ,  B >. } ) ) )
4338, 42mpbird 160 . 2  |-  ( F : { A } --> { B }  ->  F  =  { <. A ,  B >. } )
447, 19f1osn 5194 . . . 4  |-  { <. A ,  B >. } : { A } -1-1-onto-> { B }
45 f1oeq1 5145 . . . 4  |-  ( F  =  { <. A ,  B >. }  ->  ( F : { A } -1-1-onto-> { B }  <->  { <. A ,  B >. } : { A }
-1-1-onto-> { B } ) )
4644, 45mpbiri 161 . . 3  |-  ( F  =  { <. A ,  B >. }  ->  F : { A } -1-1-onto-> { B } )
47 f1of 5154 . . 3  |-  ( F : { A } -1-1-onto-> { B }  ->  F : { A } --> { B } )
4846, 47syl 14 . 2  |-  ( F  =  { <. A ,  B >. }  ->  F : { A } --> { B } )
4943, 48impbii 121 1  |-  ( F : { A } --> { B }  <->  F  =  { <. A ,  B >. } )
Colors of variables: wff set class
Syntax hints:    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259    e. wcel 1409   E!weu 1916   E!wreu 2325   _Vcvv 2574   {csn 3403   <.cop 3406   Rel wrel 4378   -->wf 4926   -1-1-onto->wf1o 4929
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-reu 2330  df-v 2576  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937
This theorem is referenced by:  fsng  5364
  Copyright terms: Public domain W3C validator