ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fsnunres Unicode version

Theorem fsnunres 5622
Description: Recover the original function from a point-added function. (Contributed by Stefan O'Rear, 28-Feb-2015.)
Assertion
Ref Expression
fsnunres  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )

Proof of Theorem fsnunres
StepHypRef Expression
1 fnresdm 5232 . . . 4  |-  ( F  Fn  S  ->  ( F  |`  S )  =  F )
21adantr 274 . . 3  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( F  |`  S )  =  F )
3 ressnop0 5601 . . . 4  |-  ( -.  X  e.  S  -> 
( { <. X ,  Y >. }  |`  S )  =  (/) )
43adantl 275 . . 3  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( { <. X ,  Y >. }  |`  S )  =  (/) )
52, 4uneq12d 3231 . 2  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  |`  S )  u.  ( { <. X ,  Y >. }  |`  S ) )  =  ( F  u.  (/) ) )
6 resundir 4833 . 2  |-  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  ( ( F  |`  S )  u.  ( { <. X ,  Y >. }  |`  S ) )
7 un0 3396 . . 3  |-  ( F  u.  (/) )  =  F
87eqcomi 2143 . 2  |-  F  =  ( F  u.  (/) )
95, 6, 83eqtr4g 2197 1  |-  ( ( F  Fn  S  /\  -.  X  e.  S
)  ->  ( ( F  u.  { <. X ,  Y >. } )  |`  S )  =  F )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480    u. cun 3069   (/)c0 3363   {csn 3527   <.cop 3530    |` cres 4541    Fn wfn 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-xp 4545  df-rel 4546  df-dm 4549  df-res 4551  df-fun 5125  df-fn 5126
This theorem is referenced by:  tfrlemisucaccv  6222  tfr1onlemsucaccv  6238  tfrcllemsucaccv  6251
  Copyright terms: Public domain W3C validator