ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ftpg Unicode version

Theorem ftpg 5375
Description: A function with a domain of three elements. (Contributed by Alexander van der Vekens, 4-Dec-2017.)
Assertion
Ref Expression
ftpg  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C } )

Proof of Theorem ftpg
StepHypRef Expression
1 3simpa 912 . . . 4  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  ( X  e.  U  /\  Y  e.  V
) )
2 3simpa 912 . . . 4  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  ( A  e.  F  /\  B  e.  G
) )
3 simp1 915 . . . 4  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  X  =/=  Y )
4 fprg 5374 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V
)  /\  ( A  e.  F  /\  B  e.  G )  /\  X  =/=  Y )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }
)
51, 2, 3, 4syl3an 1188 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B } )
6 eqidd 2057 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. Z ,  C >. }  =  { <. Z ,  C >. } )
7 simp3 917 . . . . . . 7  |-  ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W )  ->  Z  e.  W )
8 simp3 917 . . . . . . 7  |-  ( ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  ->  C  e.  H )
97, 8anim12i 325 . . . . . 6  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H ) )  -> 
( Z  e.  W  /\  C  e.  H
) )
1093adant3 935 . . . . 5  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( Z  e.  W  /\  C  e.  H
) )
11 fsng 5364 . . . . 5  |-  ( ( Z  e.  W  /\  C  e.  H )  ->  ( { <. Z ,  C >. } : { Z } --> { C }  <->  {
<. Z ,  C >. }  =  { <. Z ,  C >. } ) )
1210, 11syl 14 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { <. Z ,  C >. } : { Z } --> { C }  <->  {
<. Z ,  C >. }  =  { <. Z ,  C >. } ) )
136, 12mpbird 160 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. Z ,  C >. } : { Z }
--> { C } )
14 df-ne 2221 . . . . . . 7  |-  ( X  =/=  Z  <->  -.  X  =  Z )
15 df-ne 2221 . . . . . . 7  |-  ( Y  =/=  Z  <->  -.  Y  =  Z )
16 elpri 3426 . . . . . . . . . 10  |-  ( Z  e.  { X ,  Y }  ->  ( Z  =  X  \/  Z  =  Y ) )
17 eqcom 2058 . . . . . . . . . . 11  |-  ( Z  =  X  <->  X  =  Z )
18 eqcom 2058 . . . . . . . . . . 11  |-  ( Z  =  Y  <->  Y  =  Z )
1917, 18orbi12i 691 . . . . . . . . . 10  |-  ( ( Z  =  X  \/  Z  =  Y )  <->  ( X  =  Z  \/  Y  =  Z )
)
2016, 19sylib 131 . . . . . . . . 9  |-  ( Z  e.  { X ,  Y }  ->  ( X  =  Z  \/  Y  =  Z ) )
21 oranim 818 . . . . . . . . 9  |-  ( ( X  =  Z  \/  Y  =  Z )  ->  -.  ( -.  X  =  Z  /\  -.  Y  =  Z ) )
2220, 21syl 14 . . . . . . . 8  |-  ( Z  e.  { X ,  Y }  ->  -.  ( -.  X  =  Z  /\  -.  Y  =  Z ) )
2322con2i 567 . . . . . . 7  |-  ( ( -.  X  =  Z  /\  -.  Y  =  Z )  ->  -.  Z  e.  { X ,  Y } )
2414, 15, 23syl2anb 279 . . . . . 6  |-  ( ( X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
25243adant1 933 . . . . 5  |-  ( ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/=  Z )  ->  -.  Z  e.  { X ,  Y } )
26253ad2ant3 938 . . . 4  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  -.  Z  e.  { X ,  Y } )
27 disjsn 3460 . . . 4  |-  ( ( { X ,  Y }  i^i  { Z }
)  =  (/)  <->  -.  Z  e.  { X ,  Y } )
2826, 27sylibr 141 . . 3  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { X ,  Y }  i^i  { Z } )  =  (/) )
29 fun 5091 . . 3  |-  ( ( ( { <. X ,  A >. ,  <. Y ,  B >. } : { X ,  Y } --> { A ,  B }  /\  { <. Z ,  C >. } : { Z }
--> { C } )  /\  ( { X ,  Y }  i^i  { Z } )  =  (/) )  ->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
305, 13, 28, 29syl21anc 1145 . 2  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  -> 
( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
31 df-tp 3411 . . . 4  |-  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. }  =  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } )
3231feq1i 5067 . . 3  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : { X ,  Y ,  Z } --> { A ,  B ,  C } )
33 df-tp 3411 . . . 4  |-  { X ,  Y ,  Z }  =  ( { X ,  Y }  u.  { Z } )
34 df-tp 3411 . . . 4  |-  { A ,  B ,  C }  =  ( { A ,  B }  u.  { C } )
3533, 34feq23i 5069 . . 3  |-  ( ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  { <. Z ,  C >. } ) : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
3632, 35bitri 177 . 2  |-  ( {
<. X ,  A >. , 
<. Y ,  B >. , 
<. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C }  <->  ( { <. X ,  A >. ,  <. Y ,  B >. }  u.  {
<. Z ,  C >. } ) : ( { X ,  Y }  u.  { Z } ) --> ( { A ,  B }  u.  { C } ) )
3730, 36sylibr 141 1  |-  ( ( ( X  e.  U  /\  Y  e.  V  /\  Z  e.  W
)  /\  ( A  e.  F  /\  B  e.  G  /\  C  e.  H )  /\  ( X  =/=  Y  /\  X  =/=  Z  /\  Y  =/= 
Z ) )  ->  { <. X ,  A >. ,  <. Y ,  B >. ,  <. Z ,  C >. } : { X ,  Y ,  Z } --> { A ,  B ,  C } )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 101    <-> wb 102    \/ wo 639    /\ w3a 896    = wceq 1259    e. wcel 1409    =/= wne 2220    u. cun 2943    i^i cin 2944   (/)c0 3252   {csn 3403   {cpr 3404   {ctp 3405   <.cop 3406   -->wf 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-ral 2328  df-rex 2329  df-reu 2330  df-v 2576  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-tp 3411  df-op 3412  df-br 3793  df-opab 3847  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937
This theorem is referenced by:  ftp  5376
  Copyright terms: Public domain W3C validator