ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fun2 Unicode version

Theorem fun2 5116
Description: The union of two functions with disjoint domains. (Contributed by Mario Carneiro, 12-Mar-2015.)
Assertion
Ref Expression
fun2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )

Proof of Theorem fun2
StepHypRef Expression
1 fun 5115 . 2  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> ( C  u.  C ) )
2 unidm 3126 . . 3  |-  ( C  u.  C )  =  C
3 feq3 5084 . . 3  |-  ( ( C  u.  C )  =  C  ->  (
( F  u.  G
) : ( A  u.  B ) --> ( C  u.  C )  <-> 
( F  u.  G
) : ( A  u.  B ) --> C ) )
42, 3ax-mp 7 . 2  |-  ( ( F  u.  G ) : ( A  u.  B ) --> ( C  u.  C )  <->  ( F  u.  G ) : ( A  u.  B ) --> C )
51, 4sylib 120 1  |-  ( ( ( F : A --> C  /\  G : B --> C )  /\  ( A  i^i  B )  =  (/) )  ->  ( F  u.  G ) : ( A  u.  B
) --> C )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    u. cun 2981    i^i cin 2982   (/)c0 3268   -->wf 4949
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2612  df-dif 2985  df-un 2987  df-in 2989  df-ss 2996  df-nul 3269  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-id 4077  df-rel 4399  df-cnv 4400  df-co 4401  df-dm 4402  df-rn 4403  df-fun 4955  df-fn 4956  df-f 4957
This theorem is referenced by:  ac6sfi  6455  fseq1p1m1  9223
  Copyright terms: Public domain W3C validator