ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funbrfvb Unicode version

Theorem funbrfvb 5268
Description: Equivalence of function value and binary relation. (Contributed by NM, 26-Mar-2006.)
Assertion
Ref Expression
funbrfvb  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <-> 
A F B ) )

Proof of Theorem funbrfvb
StepHypRef Expression
1 funfn 4981 . 2  |-  ( Fun 
F  <->  F  Fn  dom  F )
2 fnbrfvb 5266 . 2  |-  ( ( F  Fn  dom  F  /\  A  e.  dom  F )  ->  ( ( F `  A )  =  B  <->  A F B ) )
31, 2sylanb 278 1  |-  ( ( Fun  F  /\  A  e.  dom  F )  -> 
( ( F `  A )  =  B  <-> 
A F B ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434   class class class wbr 3805   dom cdm 4391   Fun wfun 4946    Fn wfn 4947   ` cfv 4952
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-sbc 2825  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-iota 4917  df-fun 4954  df-fn 4955  df-fv 4960
This theorem is referenced by:  funbrfv2b  5270  dfimafn  5274  funimass4  5276
  Copyright terms: Public domain W3C validator