ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funcnv3 Unicode version

Theorem funcnv3 4992
Description: A condition showing a class is single-rooted. (See funcnv 4991). (Contributed by NM, 26-May-2006.)
Assertion
Ref Expression
funcnv3  |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
Distinct variable group:    x, y, A

Proof of Theorem funcnv3
StepHypRef Expression
1 dfrn2 4551 . . . . . 6  |-  ran  A  =  { y  |  E. x  x A y }
21abeq2i 2190 . . . . 5  |-  ( y  e.  ran  A  <->  E. x  x A y )
32biimpi 118 . . . 4  |-  ( y  e.  ran  A  ->  E. x  x A
y )
43biantrurd 299 . . 3  |-  ( y  e.  ran  A  -> 
( E* x  x A y  <->  ( E. x  x A y  /\  E* x  x A
y ) ) )
54ralbiia 2381 . 2  |-  ( A. y  e.  ran  A E* x  x A y  <->  A. y  e.  ran  A ( E. x  x A y  /\  E* x  x A y ) )
6 funcnv 4991 . 2  |-  ( Fun  `' A  <->  A. y  e.  ran  A E* x  x A y )
7 df-reu 2356 . . . 4  |-  ( E! x  e.  dom  A  x A y  <->  E! x
( x  e.  dom  A  /\  x A y ) )
8 vex 2605 . . . . . . 7  |-  x  e. 
_V
9 vex 2605 . . . . . . 7  |-  y  e. 
_V
108, 9breldm 4567 . . . . . 6  |-  ( x A y  ->  x  e.  dom  A )
1110pm4.71ri 384 . . . . 5  |-  ( x A y  <->  ( x  e.  dom  A  /\  x A y ) )
1211eubii 1951 . . . 4  |-  ( E! x  x A y  <-> 
E! x ( x  e.  dom  A  /\  x A y ) )
13 eu5 1989 . . . 4  |-  ( E! x  x A y  <-> 
( E. x  x A y  /\  E* x  x A y ) )
147, 12, 133bitr2i 206 . . 3  |-  ( E! x  e.  dom  A  x A y  <->  ( E. x  x A y  /\  E* x  x A
y ) )
1514ralbii 2373 . 2  |-  ( A. y  e.  ran  A E! x  e.  dom  A  x A y  <->  A. y  e.  ran  A ( E. x  x A y  /\  E* x  x A y ) )
165, 6, 153bitr4i 210 1  |-  ( Fun  `' A  <->  A. y  e.  ran  A E! x  e.  dom  A  x A y )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103   E.wex 1422    e. wcel 1434   E!weu 1942   E*wmo 1943   A.wral 2349   E!wreu 2351   class class class wbr 3793   `'ccnv 4370   dom cdm 4371   ran crn 4372   Fun wfun 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-reu 2356  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-fun 4934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator