![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > funfvex | Unicode version |
Description: The value of a function exists. A special case of Corollary 6.13 of [TakeutiZaring] p. 27. (Contributed by Jim Kingdon, 29-Dec-2018.) |
Ref | Expression |
---|---|
funfvex |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-fv 4940 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | funfveu 5219 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
3 | euiotaex 4913 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | 2, 3 | syl 14 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | 1, 4 | syl5eqel 2166 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-eu 1945 df-mo 1946 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-sbc 2817 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-id 4056 df-cnv 4379 df-co 4380 df-dm 4381 df-iota 4897 df-fun 4934 df-fv 4940 |
This theorem is referenced by: fnbrfvb 5246 fvelrnb 5253 funimass4 5256 fvelimab 5261 fniinfv 5263 funfvdm 5268 dmfco 5273 fvco2 5274 eqfnfv 5297 fndmdif 5304 fndmin 5306 fvimacnvi 5313 fvimacnv 5314 funconstss 5317 fniniseg 5319 fniniseg2 5321 fnniniseg2 5322 rexsupp 5323 fvelrn 5330 rexrn 5336 ralrn 5337 dff3im 5344 fmptco 5362 fsn2 5369 fnressn 5381 resfunexg 5414 eufnfv 5421 funfvima3 5424 rexima 5426 ralima 5427 fniunfv 5433 elunirn 5437 dff13 5439 foeqcnvco 5461 f1eqcocnv 5462 isocnv2 5483 isoini 5488 f1oiso 5496 fnovex 5569 suppssof1 5759 offveqb 5761 1stexg 5825 2ndexg 5826 smoiso 5951 rdgtfr 6023 rdgruledefgg 6024 rdgivallem 6030 frectfr 6049 frecrdg 6057 en1 6346 fundmen 6353 fnfi 6446 ordiso2 6505 climshft2 10283 |
Copyright terms: Public domain | W3C validator |