ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimacnv Unicode version

Theorem funimacnv 5026
Description: The image of the preimage of a function. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimacnv  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )

Proof of Theorem funimacnv
StepHypRef Expression
1 funcnvres2 5025 . . . 4  |-  ( Fun 
F  ->  `' ( `' F  |`  A )  =  ( F  |`  ( `' F " A ) ) )
21rneqd 4611 . . 3  |-  ( Fun 
F  ->  ran  `' ( `' F  |`  A )  =  ran  ( F  |`  ( `' F " A ) ) )
3 df-ima 4404 . . 3  |-  ( F
" ( `' F " A ) )  =  ran  ( F  |`  ( `' F " A ) )
42, 3syl6reqr 2134 . 2  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ran  `' ( `' F  |`  A )
)
5 df-rn 4402 . . . 4  |-  ran  F  =  dom  `' F
65ineq2i 3180 . . 3  |-  ( A  i^i  ran  F )  =  ( A  i^i  dom  `' F )
7 dmres 4680 . . 3  |-  dom  ( `' F  |`  A )  =  ( A  i^i  dom  `' F )
8 dfdm4 4575 . . 3  |-  dom  ( `' F  |`  A )  =  ran  `' ( `' F  |`  A )
96, 7, 83eqtr2ri 2110 . 2  |-  ran  `' ( `' F  |`  A )  =  ( A  i^i  ran 
F )
104, 9syl6eq 2131 1  |-  ( Fun 
F  ->  ( F " ( `' F " A ) )  =  ( A  i^i  ran  F ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1285    i^i cin 2981   `'ccnv 4390   dom cdm 4391   ran crn 4392    |` cres 4393   "cima 4394   Fun wfun 4946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-rex 2359  df-v 2612  df-un 2986  df-in 2988  df-ss 2995  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-fun 4954
This theorem is referenced by:  funimass1  5027  funimass2  5028
  Copyright terms: Public domain W3C validator