ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funimass2 Unicode version

Theorem funimass2 5008
Description: A kind of contraposition law that infers an image subclass from a subclass of a preimage. (Contributed by NM, 25-May-2004.)
Assertion
Ref Expression
funimass2  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )

Proof of Theorem funimass2
StepHypRef Expression
1 imass2 4731 . 2  |-  ( A 
C_  ( `' F " B )  ->  ( F " A )  C_  ( F " ( `' F " B ) ) )
2 funimacnv 5006 . . . . 5  |-  ( Fun 
F  ->  ( F " ( `' F " B ) )  =  ( B  i^i  ran  F ) )
32sseq2d 3028 . . . 4  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  <->  ( F " A )  C_  ( B  i^i  ran  F )
) )
4 inss1 3193 . . . . 5  |-  ( B  i^i  ran  F )  C_  B
5 sstr2 3007 . . . . 5  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  (
( B  i^i  ran  F )  C_  B  ->  ( F " A ) 
C_  B ) )
64, 5mpi 15 . . . 4  |-  ( ( F " A ) 
C_  ( B  i^i  ran 
F )  ->  ( F " A )  C_  B )
73, 6syl6bi 161 . . 3  |-  ( Fun 
F  ->  ( ( F " A )  C_  ( F " ( `' F " B ) )  ->  ( F " A )  C_  B
) )
87imp 122 . 2  |-  ( ( Fun  F  /\  ( F " A )  C_  ( F " ( `' F " B ) ) )  ->  ( F " A )  C_  B )
91, 8sylan2 280 1  |-  ( ( Fun  F  /\  A  C_  ( `' F " B ) )  -> 
( F " A
)  C_  B )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    i^i cin 2973    C_ wss 2974   `'ccnv 4370   ran crn 4372   "cima 4374   Fun wfun 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-fun 4934
This theorem is referenced by:  fvimacnvi  5313
  Copyright terms: Public domain W3C validator