ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funinsn Unicode version

Theorem funinsn 5000
Description: A function based on the singleton of an ordered pair. Unlike funsng 4997, this holds even if  A or  B is a proper class. (Contributed by Jim Kingdon, 17-Apr-2022.)
Assertion
Ref Expression
funinsn  |-  Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )

Proof of Theorem funinsn
Dummy variables  x  y  z are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 inss2 3204 . . . 4  |-  ( {
<. A ,  B >. }  i^i  ( V  X.  W ) )  C_  ( V  X.  W
)
2 xpss 4495 . . . 4  |-  ( V  X.  W )  C_  ( _V  X.  _V )
31, 2sstri 3018 . . 3  |-  ( {
<. A ,  B >. }  i^i  ( V  X.  W ) )  C_  ( _V  X.  _V )
4 df-rel 4399 . . 3  |-  ( Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( { <. A ,  B >. }  i^i  ( V  X.  W ) ) 
C_  ( _V  X.  _V ) )
53, 4mpbir 144 . 2  |-  Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
6 elin 3166 . . . . . . . . 9  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( <. x ,  y
>.  e.  { <. A ,  B >. }  /\  <. x ,  y >.  e.  ( V  X.  W ) ) )
76simplbi 268 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  y
>.  e.  { <. A ,  B >. } )
8 elsni 3435 . . . . . . . 8  |-  ( <.
x ,  y >.  e.  { <. A ,  B >. }  ->  <. x ,  y >.  =  <. A ,  B >. )
97, 8syl 14 . . . . . . 7  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  y
>.  =  <. A ,  B >. )
10 vex 2613 . . . . . . . 8  |-  x  e. 
_V
11 vex 2613 . . . . . . . 8  |-  y  e. 
_V
1210, 11opth 4021 . . . . . . 7  |-  ( <.
x ,  y >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  y  =  B ) )
139, 12sylib 120 . . . . . 6  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  ( x  =  A  /\  y  =  B ) )
1413simprd 112 . . . . 5  |-  ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  y  =  B )
15 elin 3166 . . . . . . . . 9  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( <. x ,  z
>.  e.  { <. A ,  B >. }  /\  <. x ,  z >.  e.  ( V  X.  W ) ) )
1615simplbi 268 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  z
>.  e.  { <. A ,  B >. } )
17 elsni 3435 . . . . . . . 8  |-  ( <.
x ,  z >.  e.  { <. A ,  B >. }  ->  <. x ,  z >.  =  <. A ,  B >. )
1816, 17syl 14 . . . . . . 7  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  <. x ,  z
>.  =  <. A ,  B >. )
19 vex 2613 . . . . . . . 8  |-  z  e. 
_V
2010, 19opth 4021 . . . . . . 7  |-  ( <.
x ,  z >.  =  <. A ,  B >.  <-> 
( x  =  A  /\  z  =  B ) )
2118, 20sylib 120 . . . . . 6  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  ( x  =  A  /\  z  =  B ) )
2221simprd 112 . . . . 5  |-  ( <.
x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  ->  z  =  B )
23 eqtr3 2102 . . . . 5  |-  ( ( y  =  B  /\  z  =  B )  ->  y  =  z )
2414, 22, 23syl2an 283 . . . 4  |-  ( (
<. x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z )
2524gen2 1380 . . 3  |-  A. y A. z ( ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z )
2625ax-gen 1379 . 2  |-  A. x A. y A. z ( ( <. x ,  y
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) )  /\  <. x ,  z >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) ) )  ->  y  =  z )
27 dffun4 4964 . 2  |-  ( Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  <-> 
( Rel  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  A. x A. y A. z ( ( <.
x ,  y >.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )  /\  <. x ,  z
>.  e.  ( { <. A ,  B >. }  i^i  ( V  X.  W
) ) )  -> 
y  =  z ) ) )
285, 26, 27mpbir2an 884 1  |-  Fun  ( { <. A ,  B >. }  i^i  ( V  X.  W ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102   A.wal 1283    = wceq 1285    e. wcel 1434   _Vcvv 2610    i^i cin 2982    C_ wss 2983   {csn 3417   <.cop 3420    X. cxp 4390   Rel wrel 4397   Fun wfun 4947
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3917  ax-pow 3969  ax-pr 3993
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ral 2358  df-v 2612  df-un 2987  df-in 2989  df-ss 2996  df-pw 3403  df-sn 3423  df-pr 3424  df-op 3426  df-br 3807  df-opab 3861  df-id 4077  df-xp 4398  df-rel 4399  df-cnv 4400  df-co 4401  df-fun 4955
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator