ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funopab Unicode version

Theorem funopab 4965
Description: A class of ordered pairs is a function when there is at most one second member for each pair. (Contributed by NM, 16-May-1995.)
Assertion
Ref Expression
funopab  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y ph )
Distinct variable group:    x, y
Allowed substitution hints:    ph( x, y)

Proof of Theorem funopab
StepHypRef Expression
1 relopab 4492 . . 3  |-  Rel  { <. x ,  y >.  |  ph }
2 nfopab1 3855 . . . 4  |-  F/_ x { <. x ,  y
>.  |  ph }
3 nfopab2 3856 . . . 4  |-  F/_ y { <. x ,  y
>.  |  ph }
42, 3dffun6f 4945 . . 3  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  ( Rel  {
<. x ,  y >.  |  ph }  /\  A. x E* y  x { <. x ,  y >.  |  ph } y ) )
51, 4mpbiran 882 . 2  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y  x { <. x ,  y >.  |  ph } y )
6 df-br 3794 . . . . 5  |-  ( x { <. x ,  y
>.  |  ph } y  <->  <. x ,  y >.  e.  { <. x ,  y
>.  |  ph } )
7 opabid 4020 . . . . 5  |-  ( <.
x ,  y >.  e.  { <. x ,  y
>.  |  ph }  <->  ph )
86, 7bitri 182 . . . 4  |-  ( x { <. x ,  y
>.  |  ph } y  <->  ph )
98mobii 1979 . . 3  |-  ( E* y  x { <. x ,  y >.  |  ph } y  <->  E* y ph )
109albii 1400 . 2  |-  ( A. x E* y  x { <. x ,  y >.  |  ph } y  <->  A. x E* y ph )
115, 10bitri 182 1  |-  ( Fun 
{ <. x ,  y
>.  |  ph }  <->  A. x E* y ph )
Colors of variables: wff set class
Syntax hints:    <-> wb 103   A.wal 1283    e. wcel 1434   E*wmo 1943   <.cop 3409   class class class wbr 3793   {copab 3846   Rel wrel 4376   Fun wfun 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ral 2354  df-rex 2355  df-v 2604  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-fun 4934
This theorem is referenced by:  funopabeq  4966  isarep2  5017  fnopabg  5053  fvopab3ig  5278  opabex  5417  funoprabg  5631
  Copyright terms: Public domain W3C validator