ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funoprabg Unicode version

Theorem funoprabg 5870
Description: "At most one" is a sufficient condition for an operation class abstraction to be a function. (Contributed by NM, 28-Aug-2007.)
Assertion
Ref Expression
funoprabg  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Distinct variable group:    x, y, z
Allowed substitution hints:    ph( x, y, z)

Proof of Theorem funoprabg
Dummy variable  w is distinct from all other variables.
StepHypRef Expression
1 mosubopt 4604 . . 3  |-  ( A. x A. y E* z ph  ->  E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
21alrimiv 1846 . 2  |-  ( A. x A. y E* z ph  ->  A. w E* z E. x E. y ( w  =  <. x ,  y >.  /\  ph ) )
3 dfoprab2 5818 . . . 4  |-  { <. <.
x ,  y >. ,  z >.  |  ph }  =  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) }
43funeqi 5144 . . 3  |-  ( Fun 
{ <. <. x ,  y
>. ,  z >.  | 
ph }  <->  Fun  { <. w ,  z >.  |  E. x E. y ( w  =  <. x ,  y
>.  /\  ph ) } )
5 funopab 5158 . . 3  |-  ( Fun 
{ <. w ,  z
>.  |  E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) }  <->  A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph ) )
64, 5bitr2i 184 . 2  |-  ( A. w E* z E. x E. y ( w  = 
<. x ,  y >.  /\  ph )  <->  Fun  { <. <.
x ,  y >. ,  z >.  |  ph } )
72, 6sylib 121 1  |-  ( A. x A. y E* z ph  ->  Fun  { <. <. x ,  y >. ,  z
>.  |  ph } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103   A.wal 1329    = wceq 1331   E.wex 1468   E*wmo 2000   <.cop 3530   {copab 3988   Fun wfun 5117   {coprab 5775
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ral 2421  df-rex 2422  df-v 2688  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-br 3930  df-opab 3990  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-fun 5125  df-oprab 5778
This theorem is referenced by:  funoprab  5871  fnoprabg  5872  oprabexd  6025
  Copyright terms: Public domain W3C validator