ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  funtp Unicode version

Theorem funtp 5003
Description: A function with a domain of three elements. (Contributed by NM, 14-Sep-2011.)
Hypotheses
Ref Expression
funtp.1  |-  A  e. 
_V
funtp.2  |-  B  e. 
_V
funtp.3  |-  C  e. 
_V
funtp.4  |-  D  e. 
_V
funtp.5  |-  E  e. 
_V
funtp.6  |-  F  e. 
_V
Assertion
Ref Expression
funtp  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )

Proof of Theorem funtp
StepHypRef Expression
1 funtp.1 . . . . . 6  |-  A  e. 
_V
2 funtp.2 . . . . . 6  |-  B  e. 
_V
3 funtp.4 . . . . . 6  |-  D  e. 
_V
4 funtp.5 . . . . . 6  |-  E  e. 
_V
51, 2, 3, 4funpr 5002 . . . . 5  |-  ( A  =/=  B  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. } )
6 funtp.3 . . . . . 6  |-  C  e. 
_V
7 funtp.6 . . . . . 6  |-  F  e. 
_V
86, 7funsn 4998 . . . . 5  |-  Fun  { <. C ,  F >. }
95, 8jctir 306 . . . 4  |-  ( A  =/=  B  ->  ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } ) )
103, 4dmprop 4845 . . . . . . 7  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  { A ,  B }
11 df-pr 3423 . . . . . . 7  |-  { A ,  B }  =  ( { A }  u.  { B } )
1210, 11eqtri 2103 . . . . . 6  |-  dom  { <. A ,  D >. , 
<. B ,  E >. }  =  ( { A }  u.  { B } )
137dmsnop 4844 . . . . . 6  |-  dom  { <. C ,  F >. }  =  { C }
1412, 13ineq12i 3181 . . . . 5  |-  ( dom 
{ <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  ( ( { A }  u.  { B } )  i^i 
{ C } )
15 disjsn2 3473 . . . . . . 7  |-  ( A  =/=  C  ->  ( { A }  i^i  { C } )  =  (/) )
16 disjsn2 3473 . . . . . . 7  |-  ( B  =/=  C  ->  ( { B }  i^i  { C } )  =  (/) )
1715, 16anim12i 331 . . . . . 6  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  i^i  { C }
)  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) )
18 undisj1 3317 . . . . . 6  |-  ( ( ( { A }  i^i  { C } )  =  (/)  /\  ( { B }  i^i  { C } )  =  (/) ) 
<->  ( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
1917, 18sylib 120 . . . . 5  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( ( { A }  u.  { B } )  i^i  { C } )  =  (/) )
2014, 19syl5eq 2127 . . . 4  |-  ( ( A  =/=  C  /\  B  =/=  C )  -> 
( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  {
<. C ,  F >. } )  =  (/) )
21 funun 4994 . . . 4  |-  ( ( ( Fun  { <. A ,  D >. ,  <. B ,  E >. }  /\  Fun  { <. C ,  F >. } )  /\  ( dom  { <. A ,  D >. ,  <. B ,  E >. }  i^i  dom  { <. C ,  F >. } )  =  (/) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
229, 20, 21syl2an 283 . . 3  |-  ( ( A  =/=  B  /\  ( A  =/=  C  /\  B  =/=  C
) )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
23223impb 1135 . 2  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } ) )
24 df-tp 3424 . . 3  |-  { <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  =  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  { <. C ,  F >. } )
2524funeqi 4972 . 2  |-  ( Fun 
{ <. A ,  D >. ,  <. B ,  E >. ,  <. C ,  F >. }  <->  Fun  ( { <. A ,  D >. ,  <. B ,  E >. }  u.  {
<. C ,  F >. } ) )
2623, 25sylibr 132 1  |-  ( ( A  =/=  B  /\  A  =/=  C  /\  B  =/=  C )  ->  Fun  {
<. A ,  D >. , 
<. B ,  E >. , 
<. C ,  F >. } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    /\ w3a 920    = wceq 1285    e. wcel 1434    =/= wne 2249   _Vcvv 2610    u. cun 2980    i^i cin 2981   (/)c0 3267   {csn 3416   {cpr 3417   {ctp 3418   <.cop 3419   dom cdm 4391   Fun wfun 4946
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-ral 2358  df-rex 2359  df-v 2612  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-nul 3268  df-pw 3402  df-sn 3422  df-pr 3423  df-tp 3424  df-op 3425  df-br 3806  df-opab 3860  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-fun 4954
This theorem is referenced by:  fntp  5007
  Copyright terms: Public domain W3C validator