ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fv3 Unicode version

Theorem fv3 5225
Description: Alternate definition of the value of a function. Definition 6.11 of [TakeutiZaring] p. 26. (Contributed by NM, 30-Apr-2004.) (Revised by Mario Carneiro, 31-Aug-2015.)
Assertion
Ref Expression
fv3  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Distinct variable groups:    x, y, F   
x, A, y

Proof of Theorem fv3
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 elfv 5204 . . 3  |-  ( x  e.  ( F `  A )  <->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
2 bi2 125 . . . . . . . . . 10  |-  ( ( A F y  <->  y  =  z )  ->  (
y  =  z  ->  A F y ) )
32alimi 1360 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  A. y
( y  =  z  ->  A F y ) )
4 vex 2577 . . . . . . . . . 10  |-  z  e. 
_V
5 breq2 3796 . . . . . . . . . 10  |-  ( y  =  z  ->  ( A F y  <->  A F
z ) )
64, 5ceqsalv 2601 . . . . . . . . 9  |-  ( A. y ( y  =  z  ->  A F
y )  <->  A F
z )
73, 6sylib 131 . . . . . . . 8  |-  ( A. y ( A F y  <->  y  =  z )  ->  A F
z )
87anim2i 328 . . . . . . 7  |-  ( ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )  ->  (
x  e.  z  /\  A F z ) )
98eximi 1507 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z
( x  e.  z  /\  A F z ) )
10 elequ2 1617 . . . . . . . 8  |-  ( z  =  y  ->  (
x  e.  z  <->  x  e.  y ) )
11 breq2 3796 . . . . . . . 8  |-  ( z  =  y  ->  ( A F z  <->  A F
y ) )
1210, 11anbi12d 450 . . . . . . 7  |-  ( z  =  y  ->  (
( x  e.  z  /\  A F z )  <->  ( x  e.  y  /\  A F y ) ) )
1312cbvexv 1811 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A F z )  <->  E. y
( x  e.  y  /\  A F y ) )
149, 13sylib 131 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. y
( x  e.  y  /\  A F y ) )
15 exsimpr 1525 . . . . . 6  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E. z A. y ( A F y  <->  y  =  z ) )
16 df-eu 1919 . . . . . 6  |-  ( E! y  A F y  <->  E. z A. y ( A F y  <->  y  =  z ) )
1715, 16sylibr 141 . . . . 5  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  E! y  A F y )
1814, 17jca 294 . . . 4  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  ->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
19 nfeu1 1927 . . . . . . 7  |-  F/ y E! y  A F y
20 nfv 1437 . . . . . . . . 9  |-  F/ y  x  e.  z
21 nfa1 1450 . . . . . . . . 9  |-  F/ y A. y ( A F y  <->  y  =  z )
2220, 21nfan 1473 . . . . . . . 8  |-  F/ y ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2322nfex 1544 . . . . . . 7  |-  F/ y E. z ( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) )
2419, 23nfim 1480 . . . . . 6  |-  F/ y ( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
25 bi1 115 . . . . . . . . . . . . . 14  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  y  =  z ) )
26 ax-14 1421 . . . . . . . . . . . . . 14  |-  ( y  =  z  ->  (
x  e.  y  ->  x  e.  z )
)
2725, 26syl6 33 . . . . . . . . . . . . 13  |-  ( ( A F y  <->  y  =  z )  ->  ( A F y  ->  (
x  e.  y  ->  x  e.  z )
) )
2827com23 76 . . . . . . . . . . . 12  |-  ( ( A F y  <->  y  =  z )  ->  (
x  e.  y  -> 
( A F y  ->  x  e.  z ) ) )
2928impd 246 . . . . . . . . . . 11  |-  ( ( A F y  <->  y  =  z )  ->  (
( x  e.  y  /\  A F y )  ->  x  e.  z ) )
3029sps 1446 . . . . . . . . . 10  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  ->  x  e.  z )
)
3130anc2ri 317 . . . . . . . . 9  |-  ( A. y ( A F y  <->  y  =  z )  ->  ( (
x  e.  y  /\  A F y )  -> 
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3231com12 30 . . . . . . . 8  |-  ( ( x  e.  y  /\  A F y )  -> 
( A. y ( A F y  <->  y  =  z )  ->  (
x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3332eximdv 1776 . . . . . . 7  |-  ( ( x  e.  y  /\  A F y )  -> 
( E. z A. y ( A F y  <->  y  =  z )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3416, 33syl5bi 145 . . . . . 6  |-  ( ( x  e.  y  /\  A F y )  -> 
( E! y  A F y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3524, 34exlimi 1501 . . . . 5  |-  ( E. y ( x  e.  y  /\  A F y )  ->  ( E! y  A F
y  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) ) )
3635imp 119 . . . 4  |-  ( ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y )  ->  E. z
( x  e.  z  /\  A. y ( A F y  <->  y  =  z ) ) )
3718, 36impbii 121 . . 3  |-  ( E. z ( x  e.  z  /\  A. y
( A F y  <-> 
y  =  z ) )  <->  ( E. y
( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
381, 37bitri 177 . 2  |-  ( x  e.  ( F `  A )  <->  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F y ) )
3938abbi2i 2168 1  |-  ( F `
 A )  =  { x  |  ( E. y ( x  e.  y  /\  A F y )  /\  E! y  A F
y ) }
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102   A.wal 1257    = wceq 1259   E.wex 1397    e. wcel 1409   E!weu 1916   {cab 2042   class class class wbr 3792   ` cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-iota 4895  df-fv 4938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator