ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvelimab Unicode version

Theorem fvelimab 5470
Description: Function value in an image. (Contributed by NM, 20-Jan-2007.) (Proof shortened by Andrew Salmon, 22-Oct-2011.) (Revised by David Abernethy, 17-Dec-2011.)
Assertion
Ref Expression
fvelimab  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Distinct variable groups:    x, B    x, C    x, F
Allowed substitution hint:    A( x)

Proof of Theorem fvelimab
Dummy variables  v  u are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 elex 2692 . . . 4  |-  ( C  e.  ( F " B )  ->  C  e.  _V )
21anim2i 339 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  ( F " B ) )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
3 ssel2 3087 . . . . . . . 8  |-  ( ( B  C_  A  /\  u  e.  B )  ->  u  e.  A )
4 funfvex 5431 . . . . . . . . 9  |-  ( ( Fun  F  /\  u  e.  dom  F )  -> 
( F `  u
)  e.  _V )
54funfni 5218 . . . . . . . 8  |-  ( ( F  Fn  A  /\  u  e.  A )  ->  ( F `  u
)  e.  _V )
63, 5sylan2 284 . . . . . . 7  |-  ( ( F  Fn  A  /\  ( B  C_  A  /\  u  e.  B )
)  ->  ( F `  u )  e.  _V )
76anassrs 397 . . . . . 6  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( F `  u )  e.  _V )
8 eleq1 2200 . . . . . 6  |-  ( ( F `  u )  =  C  ->  (
( F `  u
)  e.  _V  <->  C  e.  _V ) )
97, 8syl5ibcom 154 . . . . 5  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  u  e.  B
)  ->  ( ( F `  u )  =  C  ->  C  e. 
_V ) )
109rexlimdva 2547 . . . 4  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( E. u  e.  B  ( F `  u )  =  C  ->  C  e.  _V ) )
1110imdistani 441 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  E. u  e.  B  ( F `  u )  =  C )  ->  ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )
)
12 eleq1 2200 . . . . . . 7  |-  ( v  =  C  ->  (
v  e.  ( F
" B )  <->  C  e.  ( F " B ) ) )
13 eqeq2 2147 . . . . . . . 8  |-  ( v  =  C  ->  (
( F `  u
)  =  v  <->  ( F `  u )  =  C ) )
1413rexbidv 2436 . . . . . . 7  |-  ( v  =  C  ->  ( E. u  e.  B  ( F `  u )  =  v  <->  E. u  e.  B  ( F `  u )  =  C ) )
1512, 14bibi12d 234 . . . . . 6  |-  ( v  =  C  ->  (
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v )  <->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
1615imbi2d 229 . . . . 5  |-  ( v  =  C  ->  (
( ( F  Fn  A  /\  B  C_  A
)  ->  ( v  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  v ) )  <-> 
( ( F  Fn  A  /\  B  C_  A
)  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) ) )
17 fnfun 5215 . . . . . . . 8  |-  ( F  Fn  A  ->  Fun  F )
1817adantr 274 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  Fun  F )
19 fndm 5217 . . . . . . . . 9  |-  ( F  Fn  A  ->  dom  F  =  A )
2019sseq2d 3122 . . . . . . . 8  |-  ( F  Fn  A  ->  ( B  C_  dom  F  <->  B  C_  A
) )
2120biimpar 295 . . . . . . 7  |-  ( ( F  Fn  A  /\  B  C_  A )  ->  B  C_  dom  F )
22 dfimafn 5463 . . . . . . 7  |-  ( ( Fun  F  /\  B  C_ 
dom  F )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2318, 21, 22syl2anc 408 . . . . . 6  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( F " B
)  =  { v  |  E. u  e.  B  ( F `  u )  =  v } )
2423abeq2d 2250 . . . . 5  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( v  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  v ) )
2516, 24vtoclg 2741 . . . 4  |-  ( C  e.  _V  ->  (
( F  Fn  A  /\  B  C_  A )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) ) )
2625impcom 124 . . 3  |-  ( ( ( F  Fn  A  /\  B  C_  A )  /\  C  e.  _V )  ->  ( C  e.  ( F " B
)  <->  E. u  e.  B  ( F `  u )  =  C ) )
272, 11, 26pm5.21nd 901 . 2  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. u  e.  B  ( F `  u )  =  C ) )
28 fveq2 5414 . . . 4  |-  ( u  =  x  ->  ( F `  u )  =  ( F `  x ) )
2928eqeq1d 2146 . . 3  |-  ( u  =  x  ->  (
( F `  u
)  =  C  <->  ( F `  x )  =  C ) )
3029cbvrexv 2653 . 2  |-  ( E. u  e.  B  ( F `  u )  =  C  <->  E. x  e.  B  ( F `  x )  =  C )
3127, 30syl6bb 195 1  |-  ( ( F  Fn  A  /\  B  C_  A )  -> 
( C  e.  ( F " B )  <->  E. x  e.  B  ( F `  x )  =  C ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480   {cab 2123   E.wrex 2415   _Vcvv 2681    C_ wss 3066   dom cdm 4534   "cima 4537   Fun wfun 5112    Fn wfn 5113   ` cfv 5118
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ral 2419  df-rex 2420  df-v 2683  df-sbc 2905  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-br 3925  df-opab 3985  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-fv 5126
This theorem is referenced by:  ssimaex  5475  foima2  5646  rexima  5649  ralima  5650  f1elima  5667  ovelimab  5914
  Copyright terms: Public domain W3C validator