![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fveq1 | Unicode version |
Description: Equality theorem for function value. (Contributed by NM, 29-Dec-1996.) |
Ref | Expression |
---|---|
fveq1 |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | breq 3808 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
2 | 1 | iotabidv 4939 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | df-fv 4961 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
4 | df-fv 4961 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
5 | 2, 3, 4 | 3eqtr4g 2140 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2065 |
This theorem depends on definitions: df-bi 115 df-tru 1288 df-nf 1391 df-sb 1688 df-clab 2070 df-cleq 2076 df-clel 2079 df-nfc 2212 df-rex 2359 df-uni 3623 df-br 3807 df-iota 4918 df-fv 4961 |
This theorem is referenced by: fveq1i 5232 fveq1d 5233 fvmptdf 5312 fvmptdv2 5314 isoeq1 5494 oveq 5571 offval 5772 ofrfval 5773 offval3 5814 smoeq 5961 recseq 5977 tfr0dm 5993 tfrlemiex 6002 tfr1onlemex 6018 tfr1onlemaccex 6019 tfrcllemsucaccv 6025 tfrcllembxssdm 6027 tfrcllemex 6031 tfrcllemaccex 6032 tfrcllemres 6033 rdgeq1 6042 rdgivallem 6052 rdgon 6057 rdg0 6058 frec0g 6068 freccllem 6073 frecfcllem 6075 frecsuclem 6077 frecsuc 6078 ac6sfi 6456 updjud 6577 finomni 6581 exmidomni 6583 1fv 9303 iseqeq3 9603 shftvalg 9950 shftval4g 9951 clim 10346 |
Copyright terms: Public domain | W3C validator |