ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fveq12i Unicode version

Theorem fveq12i 5211
Description: Equality deduction for function value. (Contributed by FL, 27-Jun-2014.)
Hypotheses
Ref Expression
fveq12i.1  |-  F  =  G
fveq12i.2  |-  A  =  B
Assertion
Ref Expression
fveq12i  |-  ( F `
 A )  =  ( G `  B
)

Proof of Theorem fveq12i
StepHypRef Expression
1 fveq12i.1 . . 3  |-  F  =  G
21fveq1i 5207 . 2  |-  ( F `
 A )  =  ( G `  A
)
3 fveq12i.2 . . 3  |-  A  =  B
43fveq2i 5209 . 2  |-  ( G `
 A )  =  ( G `  B
)
52, 4eqtri 2076 1  |-  ( F `
 A )  =  ( G `  B
)
Colors of variables: wff set class
Syntax hints:    = wceq 1259   ` cfv 4930
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-rex 2329  df-v 2576  df-un 2950  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-iota 4895  df-fv 4938
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator