ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fvprc Unicode version

Theorem fvprc 5197
Description: A function's value at a proper class is the empty set. (Contributed by NM, 20-May-1998.)
Assertion
Ref Expression
fvprc  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )

Proof of Theorem fvprc
Dummy variable  x is distinct from all other variables.
StepHypRef Expression
1 brprcneu 5196 . 2  |-  ( -.  A  e.  _V  ->  -.  E! x  A F x )
2 tz6.12-2 5194 . 2  |-  ( -.  E! x  A F x  ->  ( F `  A )  =  (/) )
31, 2syl 14 1  |-  ( -.  A  e.  _V  ->  ( F `  A )  =  (/) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    = wceq 1285    e. wcel 1434   E!weu 1942   _Vcvv 2602   (/)c0 3252   class class class wbr 3787   ` cfv 4926
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3898  ax-pow 3950  ax-setind 4282
This theorem depends on definitions:  df-bi 115  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-v 2604  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3253  df-pw 3386  df-sn 3406  df-pr 3407  df-op 3409  df-uni 3604  df-br 3788  df-iota 4891  df-fv 4934
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator