![]() |
Intuitionistic Logic Explorer |
< Previous
Next >
Nearby theorems |
|
Mirrors > Home > ILE Home > Th. List > fvres | Unicode version |
Description: The value of a restricted function. (Contributed by NM, 2-Aug-1994.) |
Ref | Expression |
---|---|
fvres |
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | vex 2605 |
. . . . 5
![]() ![]() ![]() ![]() | |
2 | 1 | brres 4646 |
. . . 4
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
3 | 2 | rbaib 864 |
. . 3
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
4 | 3 | iotabidv 4918 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
5 | df-fv 4940 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
6 | df-fv 4940 |
. 2
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() | |
7 | 4, 5, 6 | 3eqtr4g 2139 |
1
![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() ![]() |
Colors of variables: wff set class |
Syntax hints: ![]() ![]() ![]() ![]() ![]() ![]() |
This theorem was proved from axioms: ax-1 5 ax-2 6 ax-mp 7 ax-ia1 104 ax-ia2 105 ax-ia3 106 ax-io 663 ax-5 1377 ax-7 1378 ax-gen 1379 ax-ie1 1423 ax-ie2 1424 ax-8 1436 ax-10 1437 ax-11 1438 ax-i12 1439 ax-bndl 1440 ax-4 1441 ax-14 1446 ax-17 1460 ax-i9 1464 ax-ial 1468 ax-i5r 1469 ax-ext 2064 ax-sep 3904 ax-pow 3956 ax-pr 3972 |
This theorem depends on definitions: df-bi 115 df-3an 922 df-tru 1288 df-nf 1391 df-sb 1687 df-clab 2069 df-cleq 2075 df-clel 2078 df-nfc 2209 df-ral 2354 df-rex 2355 df-v 2604 df-un 2978 df-in 2980 df-ss 2987 df-pw 3392 df-sn 3412 df-pr 3413 df-op 3415 df-uni 3610 df-br 3794 df-opab 3848 df-xp 4377 df-res 4383 df-iota 4897 df-fv 4940 |
This theorem is referenced by: funssfv 5231 feqresmpt 5259 fvreseq 5303 respreima 5327 ffvresb 5360 fnressn 5381 fressnfv 5382 fvresi 5388 fvunsng 5389 fvsnun1 5392 fvsnun2 5393 fsnunfv 5395 funfvima 5422 isoresbr 5480 isores3 5486 isoini2 5489 ovres 5671 ofres 5756 offres 5793 fo1stresm 5819 fo2ndresm 5820 fo2ndf 5879 f1o2ndf1 5880 smores 5941 smores2 5943 tfrlem1 5957 rdgival 6031 frec0g 6046 freccllem 6051 frecsuclem 6055 frecrdg 6057 addpiord 6568 mulpiord 6569 fseq1p1m1 9187 iseqfeq2 9545 shftidt 9859 climres 10280 eucialgcvga 10584 eucialg 10585 |
Copyright terms: Public domain | W3C validator |