ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzdifsuc Unicode version

Theorem fzdifsuc 9854
Description: Remove a successor from the end of a finite set of sequential integers. (Contributed by AV, 4-Sep-2019.)
Assertion
Ref Expression
fzdifsuc  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )

Proof of Theorem fzdifsuc
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 elfzelz 9799 . . 3  |-  ( k  e.  ( M ... N )  ->  k  e.  ZZ )
21adantl 275 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( M ... N
) )  ->  k  e.  ZZ )
3 eldifi 3193 . . . 4  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ( M ... ( N  +  1 ) ) )
4 elfzelz 9799 . . . 4  |-  ( k  e.  ( M ... ( N  +  1
) )  ->  k  e.  ZZ )
53, 4syl 14 . . 3  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  ->  k  e.  ZZ )
65adantl 275 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) )  ->  k  e.  ZZ )
7 simpr 109 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  k  e.  ZZ )
8 eluzel2 9324 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  M  e.  ZZ )
98adantr 274 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  M  e.  ZZ )
10 eluzelz 9328 . . . . 5  |-  ( N  e.  ( ZZ>= `  M
)  ->  N  e.  ZZ )
1110adantr 274 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  N  e.  ZZ )
12 elfz 9789 . . . 4  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
137, 9, 11, 12syl3anc 1216 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  ( M  <_  k  /\  k  <_  N ) ) )
14 eldif 3075 . . . . . . 7  |-  ( k  e.  ( ( M ... ( N  + 
1 ) )  \  { ( N  + 
1 ) } )  <-> 
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } ) )
1511peano2zd 9169 . . . . . . . . 9  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( N  +  1 )  e.  ZZ )
16 elfz 9789 . . . . . . . . 9  |-  ( ( k  e.  ZZ  /\  M  e.  ZZ  /\  ( N  +  1 )  e.  ZZ )  -> 
( k  e.  ( M ... ( N  +  1 ) )  <-> 
( M  <_  k  /\  k  <_  ( N  +  1 ) ) ) )
177, 9, 15, 16syl3anc 1216 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... ( N  + 
1 ) )  <->  ( M  <_  k  /\  k  <_ 
( N  +  1 ) ) ) )
18 velsn 3539 . . . . . . . . . . 11  |-  ( k  e.  { ( N  +  1 ) }  <-> 
k  =  ( N  +  1 ) )
1918notbii 657 . . . . . . . . . 10  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  -.  k  =  ( N  +  1
) )
20 nesym 2351 . . . . . . . . . 10  |-  ( ( N  +  1 )  =/=  k  <->  -.  k  =  ( N  + 
1 ) )
2119, 20bitr4i 186 . . . . . . . . 9  |-  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
)
2221a1i 9 . . . . . . . 8  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  ( -.  k  e.  { ( N  +  1 ) }  <->  ( N  + 
1 )  =/=  k
) )
2317, 22anbi12d 464 . . . . . . 7  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( k  e.  ( M ... ( N  +  1 ) )  /\  -.  k  e. 
{ ( N  + 
1 ) } )  <-> 
( ( M  <_ 
k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
2414, 23syl5bb 191 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  +  1 )  =/=  k ) ) )
25 anass 398 . . . . . 6  |-  ( ( ( M  <_  k  /\  k  <_  ( N  +  1 ) )  /\  ( N  + 
1 )  =/=  k
)  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2624, 25syl6bb 195 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) ) )
27 zltlen 9122 . . . . . . 7  |-  ( ( k  e.  ZZ  /\  ( N  +  1
)  e.  ZZ )  ->  ( k  < 
( N  +  1 )  <->  ( k  <_ 
( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
287, 15, 27syl2anc 408 . . . . . 6  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <  ( N  +  1 )  <->  ( k  <_  ( N  +  1 )  /\  ( N  +  1 )  =/=  k ) ) )
2928anbi2d 459 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <  ( N  +  1 ) )  <-> 
( M  <_  k  /\  ( k  <_  ( N  +  1 )  /\  ( N  + 
1 )  =/=  k
) ) ) )
3026, 29bitr4d 190 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <  ( N  +  1 ) ) ) )
31 zleltp1 9102 . . . . . 6  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  <_  N  <->  k  <  ( N  + 
1 ) ) )
327, 11, 31syl2anc 408 . . . . 5  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  <_  N  <->  k  <  ( N  +  1 ) ) )
3332anbi2d 459 . . . 4  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  <-> 
( M  <_  k  /\  k  <  ( N  +  1 ) ) ) )
3430, 33bitr4d 190 . . 3  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( ( M ... ( N  +  1 ) ) 
\  { ( N  +  1 ) } )  <->  ( M  <_ 
k  /\  k  <_  N ) ) )
3513, 34bitr4d 190 . 2  |-  ( ( N  e.  ( ZZ>= `  M )  /\  k  e.  ZZ )  ->  (
k  e.  ( M ... N )  <->  k  e.  ( ( M ... ( N  +  1
) )  \  {
( N  +  1 ) } ) ) )
362, 6, 35eqrdav 2136 1  |-  ( N  e.  ( ZZ>= `  M
)  ->  ( M ... N )  =  ( ( M ... ( N  +  1 ) )  \  { ( N  +  1 ) } ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    = wceq 1331    e. wcel 1480    =/= wne 2306    \ cdif 3063   {csn 3522   class class class wbr 3924   ` cfv 5118  (class class class)co 5767   1c1 7614    + caddc 7616    < clt 7793    <_ cle 7794   ZZcz 9047   ZZ>=cuz 9319   ...cfz 9783
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-inn 8714  df-n0 8971  df-z 9048  df-uz 9320  df-fz 9784
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator