ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzen Unicode version

Theorem fzen 9009
Description: A shifted finite set of sequential integers is equinumerous to the original set. (Contributed by Paul Chapman, 11-Apr-2009.)
Assertion
Ref Expression
fzen  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K )
) )

Proof of Theorem fzen
Dummy variables  k  m are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 fzf 8980 . . . . 5  |-  ... :
( ZZ  X.  ZZ )
--> ~P ZZ
2 ffn 5074 . . . . 5  |-  ( ...
: ( ZZ  X.  ZZ ) --> ~P ZZ  ->  ... 
Fn  ( ZZ  X.  ZZ ) )
31, 2ax-mp 7 . . . 4  |-  ...  Fn  ( ZZ  X.  ZZ )
4 fnovex 5566 . . . 4  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N )  e. 
_V )
53, 4mp3an1 1230 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  e.  _V )
653adant3 935 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  e. 
_V )
7 simp1 915 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  M  e.  ZZ )
8 simp3 917 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  K  e.  ZZ )
97, 8zaddcld 8423 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
10 simp2 916 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  N  e.  ZZ )
1110, 8zaddcld 8423 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
12 fnovex 5566 . . . 4  |-  ( ( ...  Fn  ( ZZ 
X.  ZZ )  /\  ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( M  +  K ) ... ( N  +  K
) )  e.  _V )
133, 12mp3an1 1230 . . 3  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( M  +  K ) ... ( N  +  K
) )  e.  _V )
149, 11, 13syl2anc 397 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  +  K
) ... ( N  +  K ) )  e. 
_V )
15 elfz1 8981 . . . . 5  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... N )  <-> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N ) ) )
1615biimpd 136 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( k  e.  ( M ... N )  ->  ( k  e.  ZZ  /\  M  <_ 
k  /\  k  <_  N ) ) )
17163adant3 935 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N ) ) )
18 zaddcl 8342 . . . . . . . . . . 11  |-  ( ( k  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  +  K
)  e.  ZZ )
1918expcom 113 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
k  e.  ZZ  ->  ( k  +  K )  e.  ZZ ) )
20193ad2ant3 938 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ZZ  ->  ( k  +  K )  e.  ZZ ) )
2120adantrd 268 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  e.  ZZ ) )
22 zre 8306 . . . . . . . . . . . . . . 15  |-  ( M  e.  ZZ  ->  M  e.  RR )
23 zre 8306 . . . . . . . . . . . . . . 15  |-  ( k  e.  ZZ  ->  k  e.  RR )
24 zre 8306 . . . . . . . . . . . . . . 15  |-  ( K  e.  ZZ  ->  K  e.  RR )
25 leadd1 7499 . . . . . . . . . . . . . . 15  |-  ( ( M  e.  RR  /\  k  e.  RR  /\  K  e.  RR )  ->  ( M  <_  k  <->  ( M  +  K )  <_  (
k  +  K ) ) )
2622, 23, 24, 25syl3an 1188 . . . . . . . . . . . . . 14  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  k  <->  ( M  +  K )  <_  (
k  +  K ) ) )
2726biimpd 136 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  <_  k  ->  ( M  +  K )  <_  ( k  +  K
) ) )
2827adantrd 268 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  k  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
29283com23 1121 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
30293expia 1117 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  e.  ZZ  ->  ( ( M  <_ 
k  /\  k  <_  N )  ->  ( M  +  K )  <_  (
k  +  K ) ) ) )
3130impd 246 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  -> 
( M  +  K
)  <_  ( k  +  K ) ) )
32313adant2 934 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( M  +  K )  <_  (
k  +  K ) ) )
33 zre 8306 . . . . . . . . . . . . . . 15  |-  ( N  e.  ZZ  ->  N  e.  RR )
34 leadd1 7499 . . . . . . . . . . . . . . 15  |-  ( ( k  e.  RR  /\  N  e.  RR  /\  K  e.  RR )  ->  (
k  <_  N  <->  ( k  +  K )  <_  ( N  +  K )
) )
3523, 33, 24, 34syl3an 1188 . . . . . . . . . . . . . 14  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  <_  N  <->  ( k  +  K )  <_  ( N  +  K )
) )
3635biimpd 136 . . . . . . . . . . . . 13  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  <_  N  ->  ( k  +  K )  <_  ( N  +  K ) ) )
3736adantld 267 . . . . . . . . . . . 12  |-  ( ( k  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) )
38373coml 1122 . . . . . . . . . . 11  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
( M  <_  k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) )
39383expia 1117 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  e.  ZZ  ->  ( ( M  <_ 
k  /\  k  <_  N )  ->  ( k  +  K )  <_  ( N  +  K )
) ) )
4039impd 246 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  -> 
( k  +  K
)  <_  ( N  +  K ) ) )
41403adant1 933 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  <_  ( N  +  K )
) )
4221, 32, 413jcad 1096 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( (
k  +  K )  e.  ZZ  /\  ( M  +  K )  <_  ( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
43 zaddcl 8342 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K
)  e.  ZZ )
44433adant2 934 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M  +  K )  e.  ZZ )
45 zaddcl 8342 . . . . . . . . . 10  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K
)  e.  ZZ )
46453adant1 933 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( N  +  K )  e.  ZZ )
47 elfz1 8981 . . . . . . . . 9  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( ( k  +  K )  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( ( k  +  K )  e.  ZZ  /\  ( M  +  K )  <_ 
( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
4844, 46, 47syl2anc 397 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) )  <->  ( (
k  +  K )  e.  ZZ  /\  ( M  +  K )  <_  ( k  +  K
)  /\  ( k  +  K )  <_  ( N  +  K )
) ) )
4948biimprd 151 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( k  +  K )  e.  ZZ  /\  ( M  +  K
)  <_  ( k  +  K )  /\  (
k  +  K )  <_  ( N  +  K ) )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5042, 49syld 44 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( k  +  K )  e.  ( ( M  +  K
) ... ( N  +  K ) ) ) )
5150com12 30 . . . . 5  |-  ( ( k  e.  ZZ  /\  ( M  <_  k  /\  k  <_  N ) )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  +  K )  e.  ( ( M  +  K ) ... ( N  +  K
) ) ) )
52513impb 1111 . . . 4  |-  ( ( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N )  ->  (
( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5352com12 30 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  M  <_  k  /\  k  <_  N )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
5417, 53syld 44 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
( k  +  K
)  e.  ( ( M  +  K ) ... ( N  +  K ) ) ) )
55 elfz1 8981 . . . . 5  |-  ( ( ( M  +  K
)  e.  ZZ  /\  ( N  +  K
)  e.  ZZ )  ->  ( m  e.  ( ( M  +  K ) ... ( N  +  K )
)  <->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) ) )
5644, 46, 55syl2anc 397 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  <->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) ) )
5756biimpd 136 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  -> 
( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) ) ) )
58 zsubcl 8343 . . . . . . . . . . 11  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ )  ->  ( m  -  K
)  e.  ZZ )
5958expcom 113 . . . . . . . . . 10  |-  ( K  e.  ZZ  ->  (
m  e.  ZZ  ->  ( m  -  K )  e.  ZZ ) )
60593ad2ant3 938 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ZZ  ->  ( m  -  K )  e.  ZZ ) )
6160adantrd 268 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  e.  ZZ ) )
62 zre 8306 . . . . . . . . . . . . . 14  |-  ( m  e.  ZZ  ->  m  e.  RR )
63 leaddsub 7507 . . . . . . . . . . . . . 14  |-  ( ( M  e.  RR  /\  K  e.  RR  /\  m  e.  RR )  ->  (
( M  +  K
)  <_  m  <->  M  <_  ( m  -  K ) ) )
6422, 24, 62, 63syl3an 1188 . . . . . . . . . . . . 13  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( M  +  K
)  <_  m  <->  M  <_  ( m  -  K ) ) )
6564biimpd 136 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( M  +  K
)  <_  m  ->  M  <_  ( m  -  K ) ) )
6665adantrd 268 . . . . . . . . . . 11  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ  /\  m  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  M  <_  (
m  -  K ) ) )
67663expia 1117 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( m  e.  ZZ  ->  ( ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
)  ->  M  <_  ( m  -  K ) ) ) )
6867impd 246 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  ->  M  <_  ( m  -  K ) ) )
69683adant2 934 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  M  <_  ( m  -  K ) ) )
70 lesubadd 7503 . . . . . . . . . . . . . . . 16  |-  ( ( m  e.  RR  /\  K  e.  RR  /\  N  e.  RR )  ->  (
( m  -  K
)  <_  N  <->  m  <_  ( N  +  K ) ) )
7162, 24, 33, 70syl3an 1188 . . . . . . . . . . . . . . 15  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( m  -  K
)  <_  N  <->  m  <_  ( N  +  K ) ) )
7271biimprd 151 . . . . . . . . . . . . . 14  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
m  <_  ( N  +  K )  ->  (
m  -  K )  <_  N ) )
7372adantld 267 . . . . . . . . . . . . 13  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  ( m  -  K )  <_  N
) )
74733coml 1122 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ  /\  m  e.  ZZ )  ->  (
( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) )  ->  ( m  -  K )  <_  N
) )
75743expia 1117 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( m  e.  ZZ  ->  ( ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
)  ->  ( m  -  K )  <_  N
) ) )
7675impd 246 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  -> 
( m  -  K
)  <_  N )
)
7776ancoms 259 . . . . . . . . 9  |-  ( ( N  e.  ZZ  /\  K  e.  ZZ )  ->  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K
) ) )  -> 
( m  -  K
)  <_  N )
)
78773adant1 933 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  <_  N
) )
7961, 69, 783jcad 1096 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( (
m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K
)  /\  ( m  -  K )  <_  N
) ) )
80 elfz1 8981 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( m  -  K )  e.  ( M ... N )  <-> 
( ( m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K )  /\  (
m  -  K )  <_  N ) ) )
8180biimprd 151 . . . . . . . 8  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( ( m  -  K )  e.  ZZ  /\  M  <_ 
( m  -  K
)  /\  ( m  -  K )  <_  N
)  ->  ( m  -  K )  e.  ( M ... N ) ) )
82813adant3 935 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( ( m  -  K )  e.  ZZ  /\  M  <_  ( m  -  K )  /\  (
m  -  K )  <_  N )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8379, 82syld 44 . . . . . 6  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( m  -  K )  e.  ( M ... N ) ) )
8483com12 30 . . . . 5  |-  ( ( m  e.  ZZ  /\  ( ( M  +  K )  <_  m  /\  m  <_  ( N  +  K ) ) )  ->  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  -  K )  e.  ( M ... N ) ) )
85843impb 1111 . . . 4  |-  ( ( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) )  -> 
( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  -  K )  e.  ( M ... N ) ) )
8685com12 30 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( m  e.  ZZ  /\  ( M  +  K
)  <_  m  /\  m  <_  ( N  +  K ) )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8757, 86syld 44 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  -> 
( m  -  K
)  e.  ( M ... N ) ) )
8817imp 119 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  ( k  e.  ZZ  /\  M  <_ 
k  /\  k  <_  N ) )
8988simp1d 927 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  k  e.  ( M ... N ) )  ->  k  e.  ZZ )
9089ex 112 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
k  e.  ( M ... N )  -> 
k  e.  ZZ ) )
9157imp 119 . . . . 5  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  m  e.  (
( M  +  K
) ... ( N  +  K ) ) )  ->  ( m  e.  ZZ  /\  ( M  +  K )  <_  m  /\  m  <_  ( N  +  K )
) )
9291simp1d 927 . . . 4  |-  ( ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  /\  m  e.  (
( M  +  K
) ... ( N  +  K ) ) )  ->  m  e.  ZZ )
9392ex 112 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
m  e.  ( ( M  +  K ) ... ( N  +  K ) )  ->  m  e.  ZZ )
)
94 zcn 8307 . . . . . . 7  |-  ( m  e.  ZZ  ->  m  e.  CC )
95 zcn 8307 . . . . . . 7  |-  ( K  e.  ZZ  ->  K  e.  CC )
96 zcn 8307 . . . . . . 7  |-  ( k  e.  ZZ  ->  k  e.  CC )
97 subadd 7277 . . . . . . . . 9  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
( m  -  K
)  =  k  <->  ( K  +  k )  =  m ) )
98 eqcom 2058 . . . . . . . . 9  |-  ( ( m  -  K )  =  k  <->  k  =  ( m  -  K
) )
99 eqcom 2058 . . . . . . . . 9  |-  ( ( K  +  k )  =  m  <->  m  =  ( K  +  k
) )
10097, 98, 993bitr3g 215 . . . . . . . 8  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
k  =  ( m  -  K )  <->  m  =  ( K  +  k
) ) )
101 addcom 7211 . . . . . . . . . 10  |-  ( ( K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
1021013adant1 933 . . . . . . . . 9  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  ( K  +  k )  =  ( k  +  K ) )
103102eqeq2d 2067 . . . . . . . 8  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
m  =  ( K  +  k )  <->  m  =  ( k  +  K
) ) )
104100, 103bitrd 181 . . . . . . 7  |-  ( ( m  e.  CC  /\  K  e.  CC  /\  k  e.  CC )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
10594, 95, 96, 104syl3an 1188 . . . . . 6  |-  ( ( m  e.  ZZ  /\  K  e.  ZZ  /\  k  e.  ZZ )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
1061053coml 1122 . . . . 5  |-  ( ( K  e.  ZZ  /\  k  e.  ZZ  /\  m  e.  ZZ )  ->  (
k  =  ( m  -  K )  <->  m  =  ( k  +  K
) ) )
1071063expib 1118 . . . 4  |-  ( K  e.  ZZ  ->  (
( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
1081073ad2ant3 938 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ZZ  /\  m  e.  ZZ )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
10990, 93, 108syl2and 283 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  (
( k  e.  ( M ... N )  /\  m  e.  ( ( M  +  K
) ... ( N  +  K ) ) )  ->  ( k  =  ( m  -  K
)  <->  m  =  (
k  +  K ) ) ) )
1106, 14, 54, 87, 109en3d 6280 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ  /\  K  e.  ZZ )  ->  ( M ... N )  ~~  ( ( M  +  K ) ... ( N  +  K )
) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    <-> wb 102    /\ w3a 896    = wceq 1259    e. wcel 1409   _Vcvv 2574   ~Pcpw 3387   class class class wbr 3792    X. cxp 4371    Fn wfn 4925   -->wf 4926  (class class class)co 5540    ~~ cen 6250   CCcc 6945   RRcr 6946    + caddc 6950    <_ cle 7120    - cmin 7245   ZZcz 8302   ...cfz 8976
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-in1 554  ax-in2 555  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-coll 3900  ax-sep 3903  ax-nul 3911  ax-pow 3955  ax-pr 3972  ax-un 4198  ax-setind 4290  ax-iinf 4339  ax-cnex 7033  ax-resscn 7034  ax-1cn 7035  ax-1re 7036  ax-icn 7037  ax-addcl 7038  ax-addrcl 7039  ax-mulcl 7040  ax-addcom 7042  ax-addass 7044  ax-distr 7046  ax-i2m1 7047  ax-0id 7050  ax-rnegex 7051  ax-cnre 7053  ax-pre-ltirr 7054  ax-pre-ltwlin 7055  ax-pre-lttrn 7056  ax-pre-ltadd 7058
This theorem depends on definitions:  df-bi 114  df-dc 754  df-3or 897  df-3an 898  df-tru 1262  df-fal 1265  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ne 2221  df-nel 2315  df-ral 2328  df-rex 2329  df-reu 2330  df-rab 2332  df-v 2576  df-sbc 2788  df-csb 2881  df-dif 2948  df-un 2950  df-in 2952  df-ss 2959  df-nul 3253  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-int 3644  df-iun 3687  df-br 3793  df-opab 3847  df-mpt 3848  df-tr 3883  df-eprel 4054  df-id 4058  df-po 4061  df-iso 4062  df-iord 4131  df-on 4133  df-suc 4136  df-iom 4342  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-f1 4935  df-fo 4936  df-f1o 4937  df-fv 4938  df-riota 5496  df-ov 5543  df-oprab 5544  df-mpt2 5545  df-1st 5795  df-2nd 5796  df-recs 5951  df-irdg 5988  df-1o 6032  df-2o 6033  df-oadd 6036  df-omul 6037  df-er 6137  df-ec 6139  df-qs 6143  df-en 6253  df-ni 6460  df-pli 6461  df-mi 6462  df-lti 6463  df-plpq 6500  df-mpq 6501  df-enq 6503  df-nqqs 6504  df-plqqs 6505  df-mqqs 6506  df-1nqqs 6507  df-rq 6508  df-ltnqqs 6509  df-enq0 6580  df-nq0 6581  df-0nq0 6582  df-plq0 6583  df-mq0 6584  df-inp 6622  df-i1p 6623  df-iplp 6624  df-iltp 6626  df-enr 6869  df-nr 6870  df-ltr 6873  df-0r 6874  df-1r 6875  df-0 6954  df-1 6955  df-r 6957  df-lt 6960  df-pnf 7121  df-mnf 7122  df-xr 7123  df-ltxr 7124  df-le 7125  df-sub 7247  df-neg 7248  df-inn 7991  df-n0 8240  df-z 8303  df-fz 8977
This theorem is referenced by:  fz01en  9019  frecfzen2  9368
  Copyright terms: Public domain W3C validator