ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzo0dvdseq Unicode version

Theorem fzo0dvdseq 10402
Description: Zero is the only one of the first  A nonnegative integers that is divisible by  A. (Contributed by Stefan O'Rear, 6-Sep-2015.)
Assertion
Ref Expression
fzo0dvdseq  |-  ( B  e.  ( 0..^ A )  ->  ( A  ||  B  <->  B  =  0
) )

Proof of Theorem fzo0dvdseq
StepHypRef Expression
1 elfzolt2 9242 . . . . . . 7  |-  ( B  e.  ( 0..^ A )  ->  B  <  A )
2 elfzoelz 9234 . . . . . . . 8  |-  ( B  e.  ( 0..^ A )  ->  B  e.  ZZ )
3 elfzoel2 9233 . . . . . . . 8  |-  ( B  e.  ( 0..^ A )  ->  A  e.  ZZ )
4 zltnle 8478 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  A  e.  ZZ )  ->  ( B  <  A  <->  -.  A  <_  B )
)
52, 3, 4syl2anc 403 . . . . . . 7  |-  ( B  e.  ( 0..^ A )  ->  ( B  <  A  <->  -.  A  <_  B ) )
61, 5mpbid 145 . . . . . 6  |-  ( B  e.  ( 0..^ A )  ->  -.  A  <_  B )
76adantr 270 . . . . 5  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  -.  A  <_  B )
83adantr 270 . . . . . . 7  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  A  e.  ZZ )
9 elfzonn0 9272 . . . . . . . . . 10  |-  ( B  e.  ( 0..^ A )  ->  B  e.  NN0 )
109adantr 270 . . . . . . . . 9  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  e.  NN0 )
11 simpr 108 . . . . . . . . 9  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  =/=  0 )
12 eldifsn 3525 . . . . . . . . 9  |-  ( B  e.  ( NN0  \  {
0 } )  <->  ( B  e.  NN0  /\  B  =/=  0 ) )
1310, 11, 12sylanbrc 408 . . . . . . . 8  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  e.  ( NN0  \  {
0 } ) )
14 dfn2 8368 . . . . . . . 8  |-  NN  =  ( NN0  \  { 0 } )
1513, 14syl6eleqr 2173 . . . . . . 7  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  B  e.  NN )
16 dvdsle 10389 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  NN )  ->  ( A  ||  B  ->  A  <_  B )
)
178, 15, 16syl2anc 403 . . . . . 6  |-  ( ( B  e.  ( 0..^ A )  /\  B  =/=  0 )  ->  ( A  ||  B  ->  A  <_  B ) )
1817impancom 256 . . . . 5  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  ( B  =/=  0  ->  A  <_  B ) )
197, 18mtod 622 . . . 4  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  -.  B  =/=  0 )
20 0z 8443 . . . . . . . 8  |-  0  e.  ZZ
21 zdceq 8504 . . . . . . . 8  |-  ( ( B  e.  ZZ  /\  0  e.  ZZ )  -> DECID  B  =  0 )
2220, 21mpan2 416 . . . . . . 7  |-  ( B  e.  ZZ  -> DECID  B  =  0
)
23 nnedc 2251 . . . . . . 7  |-  (DECID  B  =  0  ->  ( -.  B  =/=  0  <->  B  = 
0 ) )
2422, 23syl 14 . . . . . 6  |-  ( B  e.  ZZ  ->  ( -.  B  =/=  0  <->  B  =  0 ) )
252, 24syl 14 . . . . 5  |-  ( B  e.  ( 0..^ A )  ->  ( -.  B  =/=  0  <->  B  = 
0 ) )
2625adantr 270 . . . 4  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  ( -.  B  =/=  0  <->  B  =  0 ) )
2719, 26mpbid 145 . . 3  |-  ( ( B  e.  ( 0..^ A )  /\  A  ||  B )  ->  B  =  0 )
2827ex 113 . 2  |-  ( B  e.  ( 0..^ A )  ->  ( A  ||  B  ->  B  = 
0 ) )
29 dvds0 10355 . . . 4  |-  ( A  e.  ZZ  ->  A  ||  0 )
303, 29syl 14 . . 3  |-  ( B  e.  ( 0..^ A )  ->  A  ||  0
)
31 breq2 3797 . . 3  |-  ( B  =  0  ->  ( A  ||  B  <->  A  ||  0
) )
3230, 31syl5ibrcom 155 . 2  |-  ( B  e.  ( 0..^ A )  ->  ( B  =  0  ->  A  ||  B ) )
3328, 32impbid 127 1  |-  ( B  e.  ( 0..^ A )  ->  ( A  ||  B  <->  B  =  0
) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 102    <-> wb 103  DECID wdc 776    = wceq 1285    e. wcel 1434    =/= wne 2246    \ cdif 2971   {csn 3406   class class class wbr 3793  (class class class)co 5543   0cc0 7043    < clt 7215    <_ cle 7216   NNcn 8106   NN0cn0 8355   ZZcz 8432  ..^cfzo 9229    || cdvds 10340
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130  ax-1cn 7131  ax-1re 7132  ax-icn 7133  ax-addcl 7134  ax-addrcl 7135  ax-mulcl 7136  ax-mulrcl 7137  ax-addcom 7138  ax-mulcom 7139  ax-addass 7140  ax-mulass 7141  ax-distr 7142  ax-i2m1 7143  ax-0lt1 7144  ax-1rid 7145  ax-0id 7146  ax-rnegex 7147  ax-precex 7148  ax-cnre 7149  ax-pre-ltirr 7150  ax-pre-ltwlin 7151  ax-pre-lttrn 7152  ax-pre-apti 7153  ax-pre-ltadd 7154  ax-pre-mulgt0 7155  ax-pre-mulext 7156
This theorem depends on definitions:  df-bi 115  df-dc 777  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-nel 2341  df-ral 2354  df-rex 2355  df-reu 2356  df-rmo 2357  df-rab 2358  df-v 2604  df-sbc 2817  df-csb 2910  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-nul 3259  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-int 3645  df-iun 3688  df-br 3794  df-opab 3848  df-mpt 3849  df-id 4056  df-po 4059  df-iso 4060  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-rn 4382  df-res 4383  df-ima 4384  df-iota 4897  df-fun 4934  df-fn 4935  df-f 4936  df-fv 4940  df-riota 5499  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-1st 5798  df-2nd 5799  df-pnf 7217  df-mnf 7218  df-xr 7219  df-ltxr 7220  df-le 7221  df-sub 7348  df-neg 7349  df-reap 7742  df-ap 7749  df-div 7828  df-inn 8107  df-n0 8356  df-z 8433  df-uz 8701  df-q 8786  df-fz 9106  df-fzo 9230  df-dvds 10341
This theorem is referenced by:  fzocongeq  10403
  Copyright terms: Public domain W3C validator