ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzoaddel Unicode version

Theorem fzoaddel 9937
Description: Translate membership in a half-open integer range. (Contributed by Stefan O'Rear, 15-Aug-2015.)
Assertion
Ref Expression
fzoaddel  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) ) )

Proof of Theorem fzoaddel
StepHypRef Expression
1 elfzoel1 9890 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  B  e.  ZZ )
21adantr 274 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  ZZ )
32zred 9141 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  e.  RR )
4 elfzoelz 9892 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  A  e.  ZZ )
54adantr 274 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  ZZ )
65zred 9141 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  e.  RR )
7 simpr 109 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  ZZ )
87zred 9141 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  D  e.  RR )
9 elfzole1 9900 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  B  <_  A )
109adantr 274 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  B  <_  A )
113, 6, 8, 10leadd1dd 8289 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( B  +  D )  <_  ( A  +  D
) )
12 elfzoel2 9891 . . . . 5  |-  ( A  e.  ( B..^ C
)  ->  C  e.  ZZ )
1312adantr 274 . . . 4  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  ZZ )
1413zred 9141 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  C  e.  RR )
15 elfzolt2 9901 . . . 4  |-  ( A  e.  ( B..^ C
)  ->  A  <  C )
1615adantr 274 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  A  <  C )
176, 14, 8, 16ltadd1dd 8286 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  <  ( C  +  D
) )
18 zaddcl 9062 . . . 4  |-  ( ( A  e.  ZZ  /\  D  e.  ZZ )  ->  ( A  +  D
)  e.  ZZ )
194, 18sylan 281 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ZZ )
20 zaddcl 9062 . . . 4  |-  ( ( B  e.  ZZ  /\  D  e.  ZZ )  ->  ( B  +  D
)  e.  ZZ )
211, 20sylan 281 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( B  +  D )  e.  ZZ )
22 zaddcl 9062 . . . 4  |-  ( ( C  e.  ZZ  /\  D  e.  ZZ )  ->  ( C  +  D
)  e.  ZZ )
2312, 22sylan 281 . . 3  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( C  +  D )  e.  ZZ )
24 elfzo 9894 . . 3  |-  ( ( ( A  +  D
)  e.  ZZ  /\  ( B  +  D
)  e.  ZZ  /\  ( C  +  D
)  e.  ZZ )  ->  ( ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) )  <->  ( ( B  +  D )  <_  ( A  +  D
)  /\  ( A  +  D )  <  ( C  +  D )
) ) )
2519, 21, 23, 24syl3anc 1201 . 2  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  (
( A  +  D
)  e.  ( ( B  +  D )..^ ( C  +  D
) )  <->  ( ( B  +  D )  <_  ( A  +  D
)  /\  ( A  +  D )  <  ( C  +  D )
) ) )
2611, 17, 25mpbir2and 913 1  |-  ( ( A  e.  ( B..^ C )  /\  D  e.  ZZ )  ->  ( A  +  D )  e.  ( ( B  +  D )..^ ( C  +  D ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    e. wcel 1465   class class class wbr 3899  (class class class)co 5742    + caddc 7591    < clt 7768    <_ cle 7769   ZZcz 9022  ..^cfzo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-fzo 9888
This theorem is referenced by:  fzoaddel2  9938  fzosubel  9939  fzofzp1  9972  fzostep1  9982
  Copyright terms: Public domain W3C validator