ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzosplitprm1 Unicode version

Theorem fzosplitprm1 9979
Description: Extending a half-open integer range by an unordered pair at the end. (Contributed by Alexander van der Vekens, 22-Sep-2018.)
Assertion
Ref Expression
fzosplitprm1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )

Proof of Theorem fzosplitprm1
StepHypRef Expression
1 simp1 966 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  e.  ZZ )
2 simp2 967 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  ZZ )
3 zre 9026 . . . . . 6  |-  ( A  e.  ZZ  ->  A  e.  RR )
4 zre 9026 . . . . . 6  |-  ( B  e.  ZZ  ->  B  e.  RR )
5 ltle 7819 . . . . . 6  |-  ( ( A  e.  RR  /\  B  e.  RR )  ->  ( A  <  B  ->  A  <_  B )
)
63, 4, 5syl2an 287 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  ->  A  <_  B )
)
763impia 1163 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <_  B )
8 eluz2 9300 . . . 4  |-  ( B  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <_  B ) )
91, 2, 7, 8syl3anbrc 1150 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  e.  ( ZZ>= `  A )
)
10 fzosplitsn 9978 . . 3  |-  ( B  e.  ( ZZ>= `  A
)  ->  ( A..^ ( B  +  1
) )  =  ( ( A..^ B )  u.  { B }
) )
119, 10syl 14 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ B )  u.  { B }
) )
12 zcn 9027 . . . . . . 7  |-  ( B  e.  ZZ  ->  B  e.  CC )
13 ax-1cn 7681 . . . . . . 7  |-  1  e.  CC
14 npcan 7939 . . . . . . . 8  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  ( ( B  - 
1 )  +  1 )  =  B )
1514eqcomd 2123 . . . . . . 7  |-  ( ( B  e.  CC  /\  1  e.  CC )  ->  B  =  ( ( B  -  1 )  +  1 ) )
1612, 13, 15sylancl 409 . . . . . 6  |-  ( B  e.  ZZ  ->  B  =  ( ( B  -  1 )  +  1 ) )
17163ad2ant2 988 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  B  =  ( ( B  -  1 )  +  1 ) )
1817oveq2d 5758 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ B )  =  ( A..^ ( ( B  -  1 )  +  1 ) ) )
19 peano2zm 9060 . . . . . . 7  |-  ( B  e.  ZZ  ->  ( B  -  1 )  e.  ZZ )
20193ad2ant2 988 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( B  -  1 )  e.  ZZ )
21 zltlem1 9079 . . . . . . 7  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ )  ->  ( A  <  B  <->  A  <_  ( B  - 
1 ) ) )
2221biimp3a 1308 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  A  <_  ( B  -  1 ) )
23 eluz2 9300 . . . . . 6  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  <->  ( A  e.  ZZ  /\  ( B  -  1 )  e.  ZZ  /\  A  <_ 
( B  -  1 ) ) )
241, 20, 22, 23syl3anbrc 1150 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( B  -  1 )  e.  ( ZZ>= `  A
) )
25 fzosplitsn 9978 . . . . 5  |-  ( ( B  -  1 )  e.  ( ZZ>= `  A
)  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2624, 25syl 14 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( ( B  - 
1 )  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2718, 26eqtrd 2150 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ B )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } ) )
2827uneq1d 3199 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( A..^ B )  u.  { B }
)  =  ( ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } ) )
29 unass 3203 . . 3  |-  ( ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } )  =  ( ( A..^ ( B  -  1 ) )  u.  ( { ( B  -  1 ) }  u.  { B } ) )
30 df-pr 3504 . . . . . 6  |-  { ( B  -  1 ) ,  B }  =  ( { ( B  - 
1 ) }  u.  { B } )
3130eqcomi 2121 . . . . 5  |-  ( { ( B  -  1 ) }  u.  { B } )  =  {
( B  -  1 ) ,  B }
3231a1i 9 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( { ( B  - 
1 ) }  u.  { B } )  =  { ( B  - 
1 ) ,  B } )
3332uneq2d 3200 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( A..^ ( B  -  1 ) )  u.  ( { ( B  -  1 ) }  u.  { B } ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
3429, 33syl5eq 2162 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  (
( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) } )  u.  { B } )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
3511, 28, 343eqtrd 2154 1  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  A  <  B )  ->  ( A..^ ( B  +  1 ) )  =  ( ( A..^ ( B  -  1 ) )  u.  { ( B  -  1 ) ,  B } ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    /\ w3a 947    = wceq 1316    e. wcel 1465    u. cun 3039   {csn 3497   {cpr 3498   class class class wbr 3899   ` cfv 5093  (class class class)co 5742   CCcc 7586   RRcr 7587   1c1 7589    + caddc 7591    < clt 7768    <_ cle 7769    - cmin 7901   ZZcz 9022   ZZ>=cuz 9294  ..^cfzo 9887
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-setind 4422  ax-cnex 7679  ax-resscn 7680  ax-1cn 7681  ax-1re 7682  ax-icn 7683  ax-addcl 7684  ax-addrcl 7685  ax-mulcl 7686  ax-addcom 7688  ax-addass 7690  ax-distr 7692  ax-i2m1 7693  ax-0lt1 7694  ax-0id 7696  ax-rnegex 7697  ax-cnre 7699  ax-pre-ltirr 7700  ax-pre-ltwlin 7701  ax-pre-lttrn 7702  ax-pre-apti 7703  ax-pre-ltadd 7704
This theorem depends on definitions:  df-bi 116  df-3or 948  df-3an 949  df-tru 1319  df-fal 1322  df-nf 1422  df-sb 1721  df-eu 1980  df-mo 1981  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ne 2286  df-nel 2381  df-ral 2398  df-rex 2399  df-reu 2400  df-rab 2402  df-v 2662  df-sbc 2883  df-csb 2976  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-iun 3785  df-br 3900  df-opab 3960  df-mpt 3961  df-id 4185  df-xp 4515  df-rel 4516  df-cnv 4517  df-co 4518  df-dm 4519  df-rn 4520  df-res 4521  df-ima 4522  df-iota 5058  df-fun 5095  df-fn 5096  df-f 5097  df-fv 5101  df-riota 5698  df-ov 5745  df-oprab 5746  df-mpo 5747  df-1st 6006  df-2nd 6007  df-pnf 7770  df-mnf 7771  df-xr 7772  df-ltxr 7773  df-le 7774  df-sub 7903  df-neg 7904  df-inn 8689  df-n0 8946  df-z 9023  df-uz 9295  df-fz 9759  df-fzo 9888
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator