ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzprval Unicode version

Theorem fzprval 9245
Description: Two ways of defining the first two values of a sequence on 
NN. (Contributed by NM, 5-Sep-2011.)
Assertion
Ref Expression
fzprval  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
Distinct variable groups:    x, A    x, B    x, F

Proof of Theorem fzprval
StepHypRef Expression
1 1z 8528 . . . . 5  |-  1  e.  ZZ
2 fzpr 9240 . . . . 5  |-  ( 1  e.  ZZ  ->  (
1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) } )
31, 2ax-mp 7 . . . 4  |-  ( 1 ... ( 1  +  1 ) )  =  { 1 ,  ( 1  +  1 ) }
4 df-2 8235 . . . . 5  |-  2  =  ( 1  +  1 )
54oveq2i 5575 . . . 4  |-  ( 1 ... 2 )  =  ( 1 ... (
1  +  1 ) )
64preq2i 3491 . . . 4  |-  { 1 ,  2 }  =  { 1 ,  ( 1  +  1 ) }
73, 5, 63eqtr4i 2113 . . 3  |-  ( 1 ... 2 )  =  { 1 ,  2 }
87raleqi 2558 . 2  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  A. x  e.  { 1 ,  2 }  ( F `  x )  =  if ( x  =  1 ,  A ,  B
) )
9 1ex 7246 . . 3  |-  1  e.  _V
10 2ex 8248 . . 3  |-  2  e.  _V
11 fveq2 5230 . . . 4  |-  ( x  =  1  ->  ( F `  x )  =  ( F ` 
1 ) )
12 iftrue 3373 . . . 4  |-  ( x  =  1  ->  if ( x  =  1 ,  A ,  B )  =  A )
1311, 12eqeq12d 2097 . . 3  |-  ( x  =  1  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  B )  <-> 
( F `  1
)  =  A ) )
14 fveq2 5230 . . . 4  |-  ( x  =  2  ->  ( F `  x )  =  ( F ` 
2 ) )
15 1ne2 8375 . . . . . . . 8  |-  1  =/=  2
1615necomi 2334 . . . . . . 7  |-  2  =/=  1
17 pm13.181 2331 . . . . . . 7  |-  ( ( x  =  2  /\  2  =/=  1 )  ->  x  =/=  1
)
1816, 17mpan2 416 . . . . . 6  |-  ( x  =  2  ->  x  =/=  1 )
1918neneqd 2270 . . . . 5  |-  ( x  =  2  ->  -.  x  =  1 )
2019iffalsed 3378 . . . 4  |-  ( x  =  2  ->  if ( x  =  1 ,  A ,  B )  =  B )
2114, 20eqeq12d 2097 . . 3  |-  ( x  =  2  ->  (
( F `  x
)  =  if ( x  =  1 ,  A ,  B )  <-> 
( F `  2
)  =  B ) )
229, 10, 13, 21ralpr 3465 . 2  |-  ( A. x  e.  { 1 ,  2 }  ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
238, 22bitri 182 1  |-  ( A. x  e.  ( 1 ... 2 ) ( F `  x )  =  if ( x  =  1 ,  A ,  B )  <->  ( ( F `  1 )  =  A  /\  ( F `  2 )  =  B ) )
Colors of variables: wff set class
Syntax hints:    /\ wa 102    <-> wb 103    = wceq 1285    e. wcel 1434    =/= wne 2249   A.wral 2353   ifcif 3368   {cpr 3417   ` cfv 4952  (class class class)co 5564   1c1 7114    + caddc 7116   2c2 8226   ZZcz 8502   ...cfz 9175
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2065  ax-sep 3916  ax-pow 3968  ax-pr 3992  ax-un 4216  ax-setind 4308  ax-cnex 7199  ax-resscn 7200  ax-1cn 7201  ax-1re 7202  ax-icn 7203  ax-addcl 7204  ax-addrcl 7205  ax-mulcl 7206  ax-addcom 7208  ax-addass 7210  ax-distr 7212  ax-i2m1 7213  ax-0lt1 7214  ax-0id 7216  ax-rnegex 7217  ax-cnre 7219  ax-pre-ltirr 7220  ax-pre-ltwlin 7221  ax-pre-lttrn 7222  ax-pre-apti 7223  ax-pre-ltadd 7224
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1688  df-eu 1946  df-mo 1947  df-clab 2070  df-cleq 2076  df-clel 2079  df-nfc 2212  df-ne 2250  df-nel 2345  df-ral 2358  df-rex 2359  df-reu 2360  df-rab 2362  df-v 2612  df-sbc 2825  df-dif 2984  df-un 2986  df-in 2988  df-ss 2995  df-if 3369  df-pw 3402  df-sn 3422  df-pr 3423  df-op 3425  df-uni 3622  df-int 3657  df-br 3806  df-opab 3860  df-mpt 3861  df-id 4076  df-xp 4397  df-rel 4398  df-cnv 4399  df-co 4400  df-dm 4401  df-rn 4402  df-res 4403  df-ima 4404  df-iota 4917  df-fun 4954  df-fn 4955  df-f 4956  df-fv 4960  df-riota 5520  df-ov 5567  df-oprab 5568  df-mpt2 5569  df-pnf 7287  df-mnf 7288  df-xr 7289  df-ltxr 7290  df-le 7291  df-sub 7418  df-neg 7419  df-inn 8177  df-2 8235  df-n0 8426  df-z 8503  df-uz 8771  df-fz 9176
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator