ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fztp Unicode version

Theorem fztp 9858
Description: A finite interval of integers with three elements. (Contributed by NM, 13-Sep-2011.) (Revised by Mario Carneiro, 7-Mar-2014.)
Assertion
Ref Expression
fztp  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
2 ) )  =  { M ,  ( M  +  1 ) ,  ( M  + 
2 ) } )

Proof of Theorem fztp
StepHypRef Expression
1 uzid 9340 . . 3  |-  ( M  e.  ZZ  ->  M  e.  ( ZZ>= `  M )
)
2 peano2uz 9378 . . 3  |-  ( M  e.  ( ZZ>= `  M
)  ->  ( M  +  1 )  e.  ( ZZ>= `  M )
)
3 fzsuc 9849 . . 3  |-  ( ( M  +  1 )  e.  ( ZZ>= `  M
)  ->  ( M ... ( ( M  + 
1 )  +  1 ) )  =  ( ( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } ) )
41, 2, 33syl 17 . 2  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  +  1 )  +  1 ) )  =  ( ( M ... ( M  +  1
) )  u.  {
( ( M  + 
1 )  +  1 ) } ) )
5 zcn 9059 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  CC )
6 ax-1cn 7713 . . . . . 6  |-  1  e.  CC
7 addass 7750 . . . . . 6  |-  ( ( M  e.  CC  /\  1  e.  CC  /\  1  e.  CC )  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
86, 6, 7mp3an23 1307 . . . . 5  |-  ( M  e.  CC  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
95, 8syl 14 . . . 4  |-  ( M  e.  ZZ  ->  (
( M  +  1 )  +  1 )  =  ( M  +  ( 1  +  1 ) ) )
10 df-2 8779 . . . . 5  |-  2  =  ( 1  +  1 )
1110oveq2i 5785 . . . 4  |-  ( M  +  2 )  =  ( M  +  ( 1  +  1 ) )
129, 11syl6eqr 2190 . . 3  |-  ( M  e.  ZZ  ->  (
( M  +  1 )  +  1 )  =  ( M  + 
2 ) )
1312oveq2d 5790 . 2  |-  ( M  e.  ZZ  ->  ( M ... ( ( M  +  1 )  +  1 ) )  =  ( M ... ( M  +  2 ) ) )
14 fzpr 9857 . . . 4  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
1 ) )  =  { M ,  ( M  +  1 ) } )
1512sneqd 3540 . . . 4  |-  ( M  e.  ZZ  ->  { ( ( M  +  1 )  +  1 ) }  =  { ( M  +  2 ) } )
1614, 15uneq12d 3231 . . 3  |-  ( M  e.  ZZ  ->  (
( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } )  =  ( { M ,  ( M  +  1 ) }  u.  { ( M  +  2 ) } ) )
17 df-tp 3535 . . 3  |-  { M ,  ( M  + 
1 ) ,  ( M  +  2 ) }  =  ( { M ,  ( M  +  1 ) }  u.  { ( M  +  2 ) } )
1816, 17syl6eqr 2190 . 2  |-  ( M  e.  ZZ  ->  (
( M ... ( M  +  1 ) )  u.  { ( ( M  +  1 )  +  1 ) } )  =  { M ,  ( M  +  1 ) ,  ( M  +  2 ) } )
194, 13, 183eqtr3d 2180 1  |-  ( M  e.  ZZ  ->  ( M ... ( M  + 
2 ) )  =  { M ,  ( M  +  1 ) ,  ( M  + 
2 ) } )
Colors of variables: wff set class
Syntax hints:    -> wi 4    = wceq 1331    e. wcel 1480    u. cun 3069   {csn 3527   {cpr 3528   {ctp 3529   ` cfv 5123  (class class class)co 5774   CCcc 7618   1c1 7621    + caddc 7623   2c2 8771   ZZcz 9054   ZZ>=cuz 9326   ...cfz 9790
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-sep 4046  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-addcom 7720  ax-addass 7722  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-0id 7728  ax-rnegex 7729  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736
This theorem depends on definitions:  df-bi 116  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rab 2425  df-v 2688  df-sbc 2910  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-pw 3512  df-sn 3533  df-pr 3534  df-tp 3535  df-op 3536  df-uni 3737  df-int 3772  df-br 3930  df-opab 3990  df-mpt 3991  df-id 4215  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-inn 8721  df-2 8779  df-n0 8978  df-z 9055  df-uz 9327  df-fz 9791
This theorem is referenced by:  fztpval  9863  fz0tp  9901  fzo0to3tp  9996
  Copyright terms: Public domain W3C validator