Intuitionistic Logic Explorer < Previous   Next > Nearby theorems Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval Unicode version

Theorem fzval 9107
 Description: The value of a finite set of sequential integers. E.g., means the set . A special case of this definition (starting at 1) appears as Definition 11-2.1 of [Gleason] p. 141, where _k means our ; he calls these sets segments of the integers. (Contributed by NM, 6-Sep-2005.) (Revised by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval
Distinct variable groups:   ,   ,

Proof of Theorem fzval
Dummy variables are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 breq1 3796 . . . 4
21anbi1d 453 . . 3
32rabbidv 2594 . 2
4 breq2 3797 . . . 4
54anbi2d 452 . . 3
65rabbidv 2594 . 2
7 df-fz 9106 . 2
8 zex 8441 . . 3
98rabex 3930 . 2
103, 6, 7, 9ovmpt2 5667 1
 Colors of variables: wff set class Syntax hints:   wi 4   wa 102   wceq 1285   wcel 1434  crab 2353   class class class wbr 3793  (class class class)co 5543   cle 7216  cz 8432  cfz 9105 This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-setind 4288  ax-cnex 7129  ax-resscn 7130 This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-neg 7349  df-z 8433  df-fz 9106 This theorem is referenced by:  fzval2  9108  elfz1  9110  fznlem  9136
 Copyright terms: Public domain W3C validator