ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  fzval2 Unicode version

Theorem fzval2 9108
Description: An alternate way of expressing a finite set of sequential integers. (Contributed by Mario Carneiro, 3-Nov-2013.)
Assertion
Ref Expression
fzval2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )

Proof of Theorem fzval2
Dummy variable  k is distinct from all other variables.
StepHypRef Expression
1 fzval 9107 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  { k  e.  ZZ  |  ( M  <_  k  /\  k  <_  N ) } )
2 zssre 8439 . . . . . . 7  |-  ZZ  C_  RR
3 ressxr 7224 . . . . . . 7  |-  RR  C_  RR*
42, 3sstri 3009 . . . . . 6  |-  ZZ  C_  RR*
54sseli 2996 . . . . 5  |-  ( M  e.  ZZ  ->  M  e.  RR* )
64sseli 2996 . . . . 5  |-  ( N  e.  ZZ  ->  N  e.  RR* )
7 iccval 9019 . . . . 5  |-  ( ( M  e.  RR*  /\  N  e.  RR* )  ->  ( M [,] N )  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
85, 6, 7syl2an 283 . . . 4  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M [,] N
)  =  { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) } )
98ineq1d 3173 . . 3  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M [,] N )  i^i  ZZ )  =  ( {
k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ ) )
10 inrab2 3244 . . . 4  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  (
RR*  i^i  ZZ )  |  ( M  <_ 
k  /\  k  <_  N ) }
11 sseqin2 3192 . . . . . 6  |-  ( ZZ  C_  RR*  <->  ( RR*  i^i  ZZ )  =  ZZ )
124, 11mpbi 143 . . . . 5  |-  ( RR*  i^i 
ZZ )  =  ZZ
13 rabeq 2596 . . . . 5  |-  ( (
RR*  i^i  ZZ )  =  ZZ  ->  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) } )
1412, 13ax-mp 7 . . . 4  |-  { k  e.  ( RR*  i^i  ZZ )  |  ( M  <_  k  /\  k  <_  N ) }  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
1510, 14eqtri 2102 . . 3  |-  ( { k  e.  RR*  |  ( M  <_  k  /\  k  <_  N ) }  i^i  ZZ )  =  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }
169, 15syl6req 2131 . 2  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  { k  e.  ZZ  |  ( M  <_ 
k  /\  k  <_  N ) }  =  ( ( M [,] N
)  i^i  ZZ )
)
171, 16eqtrd 2114 1  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M ... N
)  =  ( ( M [,] N )  i^i  ZZ ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 102    = wceq 1285    e. wcel 1434   {crab 2353    i^i cin 2973    C_ wss 2974   class class class wbr 3793  (class class class)co 5543   RRcr 7042   RR*cxr 7214    <_ cle 7216   ZZcz 8432   [,]cicc 8990   ...cfz 9105
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-in1 577  ax-in2 578  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie1 1423  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-bndl 1440  ax-4 1441  ax-13 1445  ax-14 1446  ax-17 1460  ax-i9 1464  ax-ial 1468  ax-i5r 1469  ax-ext 2064  ax-sep 3904  ax-pow 3956  ax-pr 3972  ax-un 4196  ax-setind 4288  ax-cnex 7129  ax-resscn 7130
This theorem depends on definitions:  df-bi 115  df-3or 921  df-3an 922  df-tru 1288  df-fal 1291  df-nf 1391  df-sb 1687  df-eu 1945  df-mo 1946  df-clab 2069  df-cleq 2075  df-clel 2078  df-nfc 2209  df-ne 2247  df-ral 2354  df-rex 2355  df-rab 2358  df-v 2604  df-sbc 2817  df-dif 2976  df-un 2978  df-in 2980  df-ss 2987  df-pw 3392  df-sn 3412  df-pr 3413  df-op 3415  df-uni 3610  df-br 3794  df-opab 3848  df-id 4056  df-xp 4377  df-rel 4378  df-cnv 4379  df-co 4380  df-dm 4381  df-iota 4897  df-fun 4934  df-fv 4940  df-ov 5546  df-oprab 5547  df-mpt2 5548  df-pnf 7217  df-mnf 7218  df-xr 7219  df-neg 7349  df-z 8433  df-icc 8994  df-fz 9106
This theorem is referenced by: (None)
  Copyright terms: Public domain W3C validator