ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdaddm Unicode version

Theorem gcdaddm 11672
Description: Adding a multiple of one operand of the  gcd operator to the other does not alter the result. (Contributed by Paul Chapman, 31-Mar-2011.)
Assertion
Ref Expression
gcdaddm  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )

Proof of Theorem gcdaddm
StepHypRef Expression
1 gcddvds 11652 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N ) )
213adant1 999 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  N ) )
32simpld 111 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  M )
4 simp1 981 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  ZZ )
5 1zzd 9081 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  1  e.  ZZ )
6 gcdcl 11655 . . . . . . . . . . . 12  |-  ( ( M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N
)  e.  NN0 )
763adant1 999 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e. 
NN0 )
87nn0zd 9171 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  ZZ )
9 simp2 982 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  ZZ )
10 simp3 983 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  ZZ )
11 dvds2ln 11526 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  1  e.  ZZ )  /\  ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ ) )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  N )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) ) )
124, 5, 8, 9, 10, 11syl23anc 1223 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  N )  -> 
( M  gcd  N
)  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) ) )
132, 12mpd 13 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  ( 1  x.  N ) ) )
1410zcnd 9174 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  N  e.  CC )
1514mulid2d 7784 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  N )  =  N )
1615oveq2d 5790 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  ( 1  x.  N ) )  =  ( ( K  x.  M )  +  N ) )
1713, 16breqtrd 3954 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  ||  ( ( K  x.  M )  +  N
) )
183, 17jca 304 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) ) )
194, 9zmulcld 9179 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  ZZ )
2019, 10zaddcld 9177 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  e.  ZZ )
21 dvdslegcd 11653 . . . . . . . 8  |-  ( ( ( ( M  gcd  N )  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ )  /\  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )  ->  (
( ( M  gcd  N )  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) )  -> 
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) )
2221ex 114 . . . . . . 7  |-  ( ( ( M  gcd  N
)  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ )  -> 
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  -> 
( ( ( M  gcd  N )  ||  M  /\  ( M  gcd  N )  ||  ( ( K  x.  M )  +  N ) )  ->  ( M  gcd  N )  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) ) )
238, 9, 20, 22syl3anc 1216 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( (
( M  gcd  N
)  ||  M  /\  ( M  gcd  N ) 
||  ( ( K  x.  M )  +  N ) )  -> 
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) ) ) ) )
2418, 23mpid 42 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( M  gcd  N )  <_  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
25 gcddvds 11652 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( ( K  x.  M )  +  N
)  e.  ZZ )  ->  ( ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  (
( K  x.  M
)  +  N ) ) )
269, 20, 25syl2anc 408 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  ( ( K  x.  M )  +  N ) ) )
2726simpld 111 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M )
284znegcld 9175 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  -u K  e.  ZZ )
299, 20gcdcld 11657 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e. 
NN0 )
3029nn0zd 9171 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e.  ZZ )
31 dvds2ln 11526 . . . . . . . . . 10  |-  ( ( ( -u K  e.  ZZ  /\  1  e.  ZZ )  /\  (
( M  gcd  (
( K  x.  M
)  +  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  (
( K  x.  M
)  +  N )  e.  ZZ ) )  ->  ( ( ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( K  x.  M )  +  N
) )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( -u K  x.  M )  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) ) )
3228, 5, 30, 9, 20, 31syl23anc 1223 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  M  /\  ( M  gcd  (
( K  x.  M
)  +  N ) )  ||  ( ( K  x.  M )  +  N ) )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) ) )
3326, 32mpd 13 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  ( ( -u K  x.  M )  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) ) )
344zcnd 9174 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  K  e.  CC )
359zcnd 9174 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  M  e.  CC )
3634, 35mulneg1d 8173 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u K  x.  M )  =  -u ( K  x.  M ) )
3720zcnd 9174 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  e.  CC )
3837mulid2d 7784 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
1  x.  ( ( K  x.  M )  +  N ) )  =  ( ( K  x.  M )  +  N ) )
3936, 38oveq12d 5792 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) )  =  ( -u ( K  x.  M )  +  ( ( K  x.  M )  +  N ) ) )
4034, 35mulcld 7786 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  M )  e.  CC )
4140negcld 8060 . . . . . . . . . . . . 13  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  -u ( K  x.  M )  e.  CC )
4240, 41addcomd 7913 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  -u ( K  x.  M )
)  =  ( -u ( K  x.  M
)  +  ( K  x.  M ) ) )
4340negidd 8063 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  -u ( K  x.  M )
)  =  0 )
4442, 43eqtr3d 2174 . . . . . . . . . . 11  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( K  x.  M
)  +  ( K  x.  M ) )  =  0 )
4544oveq1d 5789 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u ( K  x.  M )  +  ( K  x.  M ) )  +  N )  =  ( 0  +  N ) )
4641, 40, 14addassd 7788 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u ( K  x.  M )  +  ( K  x.  M ) )  +  N )  =  ( -u ( K  x.  M )  +  ( ( K  x.  M )  +  N ) ) )
4714addid2d 7912 . . . . . . . . . 10  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
0  +  N )  =  N )
4845, 46, 473eqtr3d 2180 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -u ( K  x.  M
)  +  ( ( K  x.  M )  +  N ) )  =  N )
4939, 48eqtrd 2172 . . . . . . . 8  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -u K  x.  M
)  +  ( 1  x.  ( ( K  x.  M )  +  N ) ) )  =  N )
5033, 49breqtrd 3954 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  N )
5127, 50jca 304 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N ) )
52 dvdslegcd 11653 . . . . . . . 8  |-  ( ( ( ( M  gcd  ( ( K  x.  M )  +  N
) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  -.  ( M  =  0  /\  N  =  0 ) )  -> 
( ( ( M  gcd  ( ( K  x.  M )  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N
) )  ||  N
)  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  <_  ( M  gcd  N ) ) )
5352ex 114 . . . . . . 7  |-  ( ( ( M  gcd  (
( K  x.  M
)  +  N ) )  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N )  -> 
( M  gcd  (
( K  x.  M
)  +  N ) )  <_  ( M  gcd  N ) ) ) )
5430, 9, 10, 53syl3anc 1216 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( (
( M  gcd  (
( K  x.  M
)  +  N ) )  ||  M  /\  ( M  gcd  ( ( K  x.  M )  +  N ) ) 
||  N )  -> 
( M  gcd  (
( K  x.  M
)  +  N ) )  <_  ( M  gcd  N ) ) ) )
5551, 54mpid 42 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  <_  ( M  gcd  N ) ) )
5624, 55anim12d 333 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  (
( M  gcd  N
)  <_  ( M  gcd  ( ( K  x.  M )  +  N
) )  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  <_ 
( M  gcd  N
) ) ) )
577nn0red 9031 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  e.  RR )
5829nn0red 9031 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  e.  RR )
5957, 58letri3d 7879 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  gcd  N
)  =  ( M  gcd  ( ( K  x.  M )  +  N ) )  <->  ( ( M  gcd  N )  <_ 
( M  gcd  (
( K  x.  M
)  +  N ) )  /\  ( M  gcd  ( ( K  x.  M )  +  N ) )  <_ 
( M  gcd  N
) ) ) )
6056, 59sylibrd 168 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) ) )
61 0zd 9066 . . . . . . 7  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  0  e.  ZZ )
62 zdceq 9126 . . . . . . 7  |-  ( ( M  e.  ZZ  /\  0  e.  ZZ )  -> DECID  M  =  0 )
639, 61, 62syl2anc 408 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  M  =  0
)
64 zdceq 9126 . . . . . . 7  |-  ( ( ( ( K  x.  M )  +  N
)  e.  ZZ  /\  0  e.  ZZ )  -> DECID  ( ( K  x.  M
)  +  N )  =  0 )
6520, 61, 64syl2anc 408 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( ( K  x.  M )  +  N
)  =  0 )
66 dcan 918 . . . . . 6  |-  (DECID  M  =  0  ->  (DECID  ( ( K  x.  M )  +  N )  =  0  -> DECID 
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) ) )
6763, 65, 66sylc 62 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )
68 zdceq 9126 . . . . . . 7  |-  ( ( N  e.  ZZ  /\  0  e.  ZZ )  -> DECID  N  =  0 )
6910, 61, 68syl2anc 408 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  N  =  0
)
70 dcan 918 . . . . . 6  |-  (DECID  M  =  0  ->  (DECID  N  = 
0  -> DECID  ( M  =  0  /\  N  =  0 ) ) )
7163, 69, 70sylc 62 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( M  =  0  /\  N  =  0 ) )
72 orandc 923 . . . . 5  |-  ( (DECID  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\ DECID  ( M  =  0  /\  N  =  0 ) )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  <->  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
7367, 71, 72syl2anc 408 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  <->  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
74 simpr 109 . . . . . . . . . . . 12  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  M  = 
0 )
7574oveq2d 5790 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  M )  =  ( K  x.  0 ) )
7634mul01d 8155 . . . . . . . . . . . 12  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( K  x.  0 )  =  0 )
7776adantr 274 . . . . . . . . . . 11  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  0 )  =  0 )
7875, 77eqtrd 2172 . . . . . . . . . 10  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( K  x.  M )  =  0 )
7978oveq1d 5789 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( K  x.  M )  +  N )  =  ( 0  +  N ) )
8047adantr 274 . . . . . . . . 9  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( 0  +  N )  =  N )
8179, 80eqtrd 2172 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( ( K  x.  M )  +  N )  =  N )
8281eqeq1d 2148 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  M  =  0
)  ->  ( (
( K  x.  M
)  +  N )  =  0  <->  N  = 
0 ) )
8382pm5.32da 447 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  <->  ( M  =  0  /\  N  =  0 ) ) )
84 oveq12 5783 . . . . . . . . 9  |-  ( ( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( 0  gcd  0 ) )
8584adantl 275 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( 0  gcd  0
) )
86 oveq12 5783 . . . . . . . . . 10  |-  ( ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  =  ( 0  gcd  0 ) )
8783, 86syl6bir 163 . . . . . . . . 9  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  N  =  0 )  ->  ( M  gcd  ( ( K  x.  M )  +  N
) )  =  ( 0  gcd  0 ) ) )
8887imp 123 . . . . . . . 8  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  =  ( 0  gcd  0
) )
8985, 88eqtr4d 2175 . . . . . . 7  |-  ( ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  /\  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) )
9089ex 114 . . . . . 6  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  N  =  0 )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9183, 90sylbid 149 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9291, 90jaod 706 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  \/  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  ( ( K  x.  M )  +  N ) ) ) )
9373, 92sylbird 169 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( -.  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) ) )
94 dcn 827 . . . . . 6  |-  (DECID  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  -> DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 ) )
9567, 94syl 14 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 ) )
96 dcn 827 . . . . . 6  |-  (DECID  ( M  =  0  /\  N  =  0 )  -> DECID  -.  ( M  =  0  /\  N  =  0
) )
9771, 96syl 14 . . . . 5  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  -.  ( M  =  0  /\  N  =  0 ) )
98 dcan 918 . . . . 5  |-  (DECID  -.  ( M  =  0  /\  ( ( K  x.  M )  +  N
)  =  0 )  ->  (DECID  -.  ( M  =  0  /\  N  =  0 )  -> DECID  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
9995, 97, 98sylc 62 . . . 4  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  -> DECID  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) )
100 exmiddc 821 . . . 4  |-  (DECID  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  ->  ( ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  \/  -.  ( -.  ( M  =  0  /\  ( ( K  x.  M )  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
10199, 100syl 14 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) )  \/  -.  ( -.  ( M  =  0  /\  (
( K  x.  M
)  +  N )  =  0 )  /\  -.  ( M  =  0  /\  N  =  0 ) ) ) )
10260, 93, 101mpjaod 707 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  (
( K  x.  M
)  +  N ) ) )
10340, 14addcomd 7913 . . 3  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  (
( K  x.  M
)  +  N )  =  ( N  +  ( K  x.  M
) ) )
104103oveq2d 5790 . 2  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  ( ( K  x.  M )  +  N ) )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
105102, 104eqtrd 2172 1  |-  ( ( K  e.  ZZ  /\  M  e.  ZZ  /\  N  e.  ZZ )  ->  ( M  gcd  N )  =  ( M  gcd  ( N  +  ( K  x.  M ) ) ) )
Colors of variables: wff set class
Syntax hints:   -. wn 3    -> wi 4    /\ wa 103    <-> wb 104    \/ wo 697  DECID wdc 819    /\ w3a 962    = wceq 1331    e. wcel 1480   class class class wbr 3929  (class class class)co 5774   0cc0 7620   1c1 7621    + caddc 7623    x. cmul 7625    <_ cle 7801   -ucneg 7934   NN0cn0 8977   ZZcz 9054    || cdvds 11493    gcd cgcd 11635
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2121  ax-coll 4043  ax-sep 4046  ax-nul 4054  ax-pow 4098  ax-pr 4131  ax-un 4355  ax-setind 4452  ax-iinf 4502  ax-cnex 7711  ax-resscn 7712  ax-1cn 7713  ax-1re 7714  ax-icn 7715  ax-addcl 7716  ax-addrcl 7717  ax-mulcl 7718  ax-mulrcl 7719  ax-addcom 7720  ax-mulcom 7721  ax-addass 7722  ax-mulass 7723  ax-distr 7724  ax-i2m1 7725  ax-0lt1 7726  ax-1rid 7727  ax-0id 7728  ax-rnegex 7729  ax-precex 7730  ax-cnre 7731  ax-pre-ltirr 7732  ax-pre-ltwlin 7733  ax-pre-lttrn 7734  ax-pre-apti 7735  ax-pre-ltadd 7736  ax-pre-mulgt0 7737  ax-pre-mulext 7738  ax-arch 7739  ax-caucvg 7740
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2002  df-mo 2003  df-clab 2126  df-cleq 2132  df-clel 2135  df-nfc 2270  df-ne 2309  df-nel 2404  df-ral 2421  df-rex 2422  df-reu 2423  df-rmo 2424  df-rab 2425  df-v 2688  df-sbc 2910  df-csb 3004  df-dif 3073  df-un 3075  df-in 3077  df-ss 3084  df-nul 3364  df-if 3475  df-pw 3512  df-sn 3533  df-pr 3534  df-op 3536  df-uni 3737  df-int 3772  df-iun 3815  df-br 3930  df-opab 3990  df-mpt 3991  df-tr 4027  df-id 4215  df-po 4218  df-iso 4219  df-iord 4288  df-on 4290  df-ilim 4291  df-suc 4293  df-iom 4505  df-xp 4545  df-rel 4546  df-cnv 4547  df-co 4548  df-dm 4549  df-rn 4550  df-res 4551  df-ima 4552  df-iota 5088  df-fun 5125  df-fn 5126  df-f 5127  df-f1 5128  df-fo 5129  df-f1o 5130  df-fv 5131  df-riota 5730  df-ov 5777  df-oprab 5778  df-mpo 5779  df-1st 6038  df-2nd 6039  df-recs 6202  df-frec 6288  df-sup 6871  df-pnf 7802  df-mnf 7803  df-xr 7804  df-ltxr 7805  df-le 7806  df-sub 7935  df-neg 7936  df-reap 8337  df-ap 8344  df-div 8433  df-inn 8721  df-2 8779  df-3 8780  df-4 8781  df-n0 8978  df-z 9055  df-uz 9327  df-q 9412  df-rp 9442  df-fz 9791  df-fzo 9920  df-fl 10043  df-mod 10096  df-seqfrec 10219  df-exp 10293  df-cj 10614  df-re 10615  df-im 10616  df-rsqrt 10770  df-abs 10771  df-dvds 11494  df-gcd 11636
This theorem is referenced by:  gcdadd  11673  gcdid  11674  modgcd  11679  gcdmultipled  11681  gcdmultiple  11708
  Copyright terms: Public domain W3C validator