ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcddiv Unicode version

Theorem gcddiv 11696
Description: Division law for GCD. (Contributed by Scott Fenton, 18-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcddiv  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C  ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )

Proof of Theorem gcddiv
Dummy variables  a  b are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 nnz 9066 . . . . . . 7  |-  ( C  e.  NN  ->  C  e.  ZZ )
213ad2ant3 1004 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  C  e.  ZZ )
3 simp1 981 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  A  e.  ZZ )
4 divides 11484 . . . . . 6  |-  ( ( C  e.  ZZ  /\  A  e.  ZZ )  ->  ( C  ||  A  <->  E. a  e.  ZZ  (
a  x.  C )  =  A ) )
52, 3, 4syl2anc 408 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  ||  A  <->  E. a  e.  ZZ  ( a  x.  C )  =  A ) )
6 simp2 982 . . . . . 6  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  B  e.  ZZ )
7 divides 11484 . . . . . 6  |-  ( ( C  e.  ZZ  /\  B  e.  ZZ )  ->  ( C  ||  B  <->  E. b  e.  ZZ  (
b  x.  C )  =  B ) )
82, 6, 7syl2anc 408 . . . . 5  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( C  ||  B  <->  E. b  e.  ZZ  ( b  x.  C )  =  B ) )
95, 8anbi12d 464 . . . 4  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  <-> 
( E. a  e.  ZZ  ( a  x.  C )  =  A  /\  E. b  e.  ZZ  ( b  x.  C )  =  B ) ) )
10 reeanv 2598 . . . 4  |-  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  <-> 
( E. a  e.  ZZ  ( a  x.  C )  =  A  /\  E. b  e.  ZZ  ( b  x.  C )  =  B ) )
119, 10syl6bbr 197 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  <->  E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B ) ) )
12 gcdcl 11644 . . . . . . . . . . . 12  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  gcd  b
)  e.  NN0 )
1312nn0cnd 9025 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( a  gcd  b
)  e.  CC )
14133adant3 1001 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
a  gcd  b )  e.  CC )
15 nncn 8721 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  CC )
16153ad2ant3 1004 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C  e.  CC )
17 simp3 983 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C  e.  NN )
1817nnap0d 8759 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  C #  0 )
1914, 16, 18divcanap4d 8549 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  gcd  b )  x.  C
)  /  C )  =  ( a  gcd  b ) )
20 nnnn0 8977 . . . . . . . . . . 11  |-  ( C  e.  NN  ->  C  e.  NN0 )
21 mulgcdr 11695 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN0 )  ->  (
( a  x.  C
)  gcd  ( b  x.  C ) )  =  ( ( a  gcd  b )  x.  C
) )
2220, 21syl3an3 1251 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( a  x.  C
)  gcd  ( b  x.  C ) )  =  ( ( a  gcd  b )  x.  C
) )
2322oveq1d 5782 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  gcd  (
b  x.  C ) )  /  C )  =  ( ( ( a  gcd  b )  x.  C )  /  C ) )
24 zcn 9052 . . . . . . . . . . . 12  |-  ( a  e.  ZZ  ->  a  e.  CC )
25243ad2ant1 1002 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  a  e.  CC )
2625, 16, 18divcanap4d 8549 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( a  x.  C
)  /  C )  =  a )
27 zcn 9052 . . . . . . . . . . . 12  |-  ( b  e.  ZZ  ->  b  e.  CC )
28273ad2ant2 1003 . . . . . . . . . . 11  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  b  e.  CC )
2928, 16, 18divcanap4d 8549 . . . . . . . . . 10  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( b  x.  C
)  /  C )  =  b )
3026, 29oveq12d 5785 . . . . . . . . 9  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  /  C
)  gcd  ( (
b  x.  C )  /  C ) )  =  ( a  gcd  b ) )
3119, 23, 303eqtr4d 2180 . . . . . . . 8  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  gcd  (
b  x.  C ) )  /  C )  =  ( ( ( a  x.  C )  /  C )  gcd  ( ( b  x.  C )  /  C
) ) )
32 oveq12 5776 . . . . . . . . . 10  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( a  x.  C )  gcd  ( b  x.  C
) )  =  ( A  gcd  B ) )
3332oveq1d 5782 . . . . . . . . 9  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( a  x.  C )  gcd  ( b  x.  C ) )  /  C )  =  ( ( A  gcd  B
)  /  C ) )
34 oveq1 5774 . . . . . . . . . 10  |-  ( ( a  x.  C )  =  A  ->  (
( a  x.  C
)  /  C )  =  ( A  /  C ) )
35 oveq1 5774 . . . . . . . . . 10  |-  ( ( b  x.  C )  =  B  ->  (
( b  x.  C
)  /  C )  =  ( B  /  C ) )
3634, 35oveqan12d 5786 . . . . . . . . 9  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( a  x.  C )  /  C )  gcd  ( ( b  x.  C )  /  C
) )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )
3733, 36eqeq12d 2152 . . . . . . . 8  |-  ( ( ( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( ( ( a  x.  C
)  gcd  ( b  x.  C ) )  /  C )  =  ( ( ( a  x.  C )  /  C
)  gcd  ( (
b  x.  C )  /  C ) )  <-> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) )
3831, 37syl5ibcom 154 . . . . . . 7  |-  ( ( a  e.  ZZ  /\  b  e.  ZZ  /\  C  e.  NN )  ->  (
( ( a  x.  C )  =  A  /\  ( b  x.  C )  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
39383expa 1181 . . . . . 6  |-  ( ( ( a  e.  ZZ  /\  b  e.  ZZ )  /\  C  e.  NN )  ->  ( ( ( a  x.  C )  =  A  /\  (
b  x.  C )  =  B )  -> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) )
4039expcom 115 . . . . 5  |-  ( C  e.  NN  ->  (
( a  e.  ZZ  /\  b  e.  ZZ )  ->  ( ( ( a  x.  C )  =  A  /\  (
b  x.  C )  =  B )  -> 
( ( A  gcd  B )  /  C )  =  ( ( A  /  C )  gcd  ( B  /  C
) ) ) ) )
4140rexlimdvv 2554 . . . 4  |-  ( C  e.  NN  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
42413ad2ant3 1004 . . 3  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  ( E. a  e.  ZZ  E. b  e.  ZZ  (
( a  x.  C
)  =  A  /\  ( b  x.  C
)  =  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
4311, 42sylbid 149 . 2  |-  ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  ->  (
( C  ||  A  /\  C  ||  B )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) ) )
4443imp 123 1  |-  ( ( ( A  e.  ZZ  /\  B  e.  ZZ  /\  C  e.  NN )  /\  ( C  ||  A  /\  C  ||  B ) )  ->  ( ( A  gcd  B )  /  C )  =  ( ( A  /  C
)  gcd  ( B  /  C ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   class class class wbr 3924  (class class class)co 5767   CCcc 7611    x. cmul 7618    / cdiv 8425   NNcn 8713   NN0cn0 8970   ZZcz 9047    || cdvds 11482    gcd cgcd 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625
This theorem is referenced by:  sqgcd  11706  divgcdodd  11810  divnumden  11863  hashgcdlem  11892
  Copyright terms: Public domain W3C validator