ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  gcdmultiple Unicode version

Theorem gcdmultiple 11697
Description: The GCD of a multiple of a number is the number itself. (Contributed by Scott Fenton, 12-Apr-2014.) (Revised by Mario Carneiro, 19-Apr-2014.)
Assertion
Ref Expression
gcdmultiple  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  ( M  x.  N )
)  =  M )

Proof of Theorem gcdmultiple
Dummy variables  k  n are mutually distinct and distinct from all other variables.
StepHypRef Expression
1 oveq2 5775 . . . . . 6  |-  ( k  =  1  ->  ( M  x.  k )  =  ( M  x.  1 ) )
21oveq2d 5783 . . . . 5  |-  ( k  =  1  ->  ( M  gcd  ( M  x.  k ) )  =  ( M  gcd  ( M  x.  1 ) ) )
32eqeq1d 2146 . . . 4  |-  ( k  =  1  ->  (
( M  gcd  ( M  x.  k )
)  =  M  <->  ( M  gcd  ( M  x.  1 ) )  =  M ) )
43imbi2d 229 . . 3  |-  ( k  =  1  ->  (
( M  e.  NN  ->  ( M  gcd  ( M  x.  k )
)  =  M )  <-> 
( M  e.  NN  ->  ( M  gcd  ( M  x.  1 ) )  =  M ) ) )
5 oveq2 5775 . . . . . 6  |-  ( k  =  n  ->  ( M  x.  k )  =  ( M  x.  n ) )
65oveq2d 5783 . . . . 5  |-  ( k  =  n  ->  ( M  gcd  ( M  x.  k ) )  =  ( M  gcd  ( M  x.  n )
) )
76eqeq1d 2146 . . . 4  |-  ( k  =  n  ->  (
( M  gcd  ( M  x.  k )
)  =  M  <->  ( M  gcd  ( M  x.  n
) )  =  M ) )
87imbi2d 229 . . 3  |-  ( k  =  n  ->  (
( M  e.  NN  ->  ( M  gcd  ( M  x.  k )
)  =  M )  <-> 
( M  e.  NN  ->  ( M  gcd  ( M  x.  n )
)  =  M ) ) )
9 oveq2 5775 . . . . . 6  |-  ( k  =  ( n  + 
1 )  ->  ( M  x.  k )  =  ( M  x.  ( n  +  1
) ) )
109oveq2d 5783 . . . . 5  |-  ( k  =  ( n  + 
1 )  ->  ( M  gcd  ( M  x.  k ) )  =  ( M  gcd  ( M  x.  ( n  +  1 ) ) ) )
1110eqeq1d 2146 . . . 4  |-  ( k  =  ( n  + 
1 )  ->  (
( M  gcd  ( M  x.  k )
)  =  M  <->  ( M  gcd  ( M  x.  (
n  +  1 ) ) )  =  M ) )
1211imbi2d 229 . . 3  |-  ( k  =  ( n  + 
1 )  ->  (
( M  e.  NN  ->  ( M  gcd  ( M  x.  k )
)  =  M )  <-> 
( M  e.  NN  ->  ( M  gcd  ( M  x.  ( n  +  1 ) ) )  =  M ) ) )
13 oveq2 5775 . . . . . 6  |-  ( k  =  N  ->  ( M  x.  k )  =  ( M  x.  N ) )
1413oveq2d 5783 . . . . 5  |-  ( k  =  N  ->  ( M  gcd  ( M  x.  k ) )  =  ( M  gcd  ( M  x.  N )
) )
1514eqeq1d 2146 . . . 4  |-  ( k  =  N  ->  (
( M  gcd  ( M  x.  k )
)  =  M  <->  ( M  gcd  ( M  x.  N
) )  =  M ) )
1615imbi2d 229 . . 3  |-  ( k  =  N  ->  (
( M  e.  NN  ->  ( M  gcd  ( M  x.  k )
)  =  M )  <-> 
( M  e.  NN  ->  ( M  gcd  ( M  x.  N )
)  =  M ) ) )
17 nncn 8721 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  CC )
1817mulid1d 7776 . . . . 5  |-  ( M  e.  NN  ->  ( M  x.  1 )  =  M )
1918oveq2d 5783 . . . 4  |-  ( M  e.  NN  ->  ( M  gcd  ( M  x.  1 ) )  =  ( M  gcd  M
) )
20 nnz 9066 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  ZZ )
21 gcdid 11663 . . . . . 6  |-  ( M  e.  ZZ  ->  ( M  gcd  M )  =  ( abs `  M
) )
2220, 21syl 14 . . . . 5  |-  ( M  e.  NN  ->  ( M  gcd  M )  =  ( abs `  M
) )
23 nnre 8720 . . . . . 6  |-  ( M  e.  NN  ->  M  e.  RR )
24 nnnn0 8977 . . . . . . 7  |-  ( M  e.  NN  ->  M  e.  NN0 )
2524nn0ge0d 9026 . . . . . 6  |-  ( M  e.  NN  ->  0  <_  M )
2623, 25absidd 10932 . . . . 5  |-  ( M  e.  NN  ->  ( abs `  M )  =  M )
2722, 26eqtrd 2170 . . . 4  |-  ( M  e.  NN  ->  ( M  gcd  M )  =  M )
2819, 27eqtrd 2170 . . 3  |-  ( M  e.  NN  ->  ( M  gcd  ( M  x.  1 ) )  =  M )
2920adantr 274 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  M  e.  ZZ )
30 nnz 9066 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  ZZ )
31 zmulcl 9100 . . . . . . . . . 10  |-  ( ( M  e.  ZZ  /\  n  e.  ZZ )  ->  ( M  x.  n
)  e.  ZZ )
3220, 30, 31syl2an 287 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( M  x.  n
)  e.  ZZ )
33 1z 9073 . . . . . . . . . 10  |-  1  e.  ZZ
34 gcdaddm 11661 . . . . . . . . . 10  |-  ( ( 1  e.  ZZ  /\  M  e.  ZZ  /\  ( M  x.  n )  e.  ZZ )  ->  ( M  gcd  ( M  x.  n ) )  =  ( M  gcd  (
( M  x.  n
)  +  ( 1  x.  M ) ) ) )
3533, 34mp3an1 1302 . . . . . . . . 9  |-  ( ( M  e.  ZZ  /\  ( M  x.  n
)  e.  ZZ )  ->  ( M  gcd  ( M  x.  n
) )  =  ( M  gcd  ( ( M  x.  n )  +  ( 1  x.  M ) ) ) )
3629, 32, 35syl2anc 408 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( M  gcd  ( M  x.  n )
)  =  ( M  gcd  ( ( M  x.  n )  +  ( 1  x.  M
) ) ) )
37 nncn 8721 . . . . . . . . . 10  |-  ( n  e.  NN  ->  n  e.  CC )
38 ax-1cn 7706 . . . . . . . . . . . 12  |-  1  e.  CC
39 adddi 7745 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  n  e.  CC  /\  1  e.  CC )  ->  ( M  x.  ( n  +  1 ) )  =  ( ( M  x.  n )  +  ( M  x.  1 ) ) )
4038, 39mp3an3 1304 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( M  x.  (
n  +  1 ) )  =  ( ( M  x.  n )  +  ( M  x.  1 ) ) )
41 mulcom 7742 . . . . . . . . . . . . . 14  |-  ( ( M  e.  CC  /\  1  e.  CC )  ->  ( M  x.  1 )  =  ( 1  x.  M ) )
4238, 41mpan2 421 . . . . . . . . . . . . 13  |-  ( M  e.  CC  ->  ( M  x.  1 )  =  ( 1  x.  M ) )
4342adantr 274 . . . . . . . . . . . 12  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( M  x.  1 )  =  ( 1  x.  M ) )
4443oveq2d 5783 . . . . . . . . . . 11  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( ( M  x.  n )  +  ( M  x.  1 ) )  =  ( ( M  x.  n )  +  ( 1  x.  M ) ) )
4540, 44eqtrd 2170 . . . . . . . . . 10  |-  ( ( M  e.  CC  /\  n  e.  CC )  ->  ( M  x.  (
n  +  1 ) )  =  ( ( M  x.  n )  +  ( 1  x.  M ) ) )
4617, 37, 45syl2an 287 . . . . . . . . 9  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( M  x.  (
n  +  1 ) )  =  ( ( M  x.  n )  +  ( 1  x.  M ) ) )
4746oveq2d 5783 . . . . . . . 8  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( M  gcd  ( M  x.  ( n  +  1 ) ) )  =  ( M  gcd  ( ( M  x.  n )  +  ( 1  x.  M
) ) ) )
4836, 47eqtr4d 2173 . . . . . . 7  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( M  gcd  ( M  x.  n )
)  =  ( M  gcd  ( M  x.  ( n  +  1
) ) ) )
4948eqeq1d 2146 . . . . . 6  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( ( M  gcd  ( M  x.  n
) )  =  M  <-> 
( M  gcd  ( M  x.  ( n  +  1 ) ) )  =  M ) )
5049biimpd 143 . . . . 5  |-  ( ( M  e.  NN  /\  n  e.  NN )  ->  ( ( M  gcd  ( M  x.  n
) )  =  M  ->  ( M  gcd  ( M  x.  (
n  +  1 ) ) )  =  M ) )
5150expcom 115 . . . 4  |-  ( n  e.  NN  ->  ( M  e.  NN  ->  ( ( M  gcd  ( M  x.  n )
)  =  M  -> 
( M  gcd  ( M  x.  ( n  +  1 ) ) )  =  M ) ) )
5251a2d 26 . . 3  |-  ( n  e.  NN  ->  (
( M  e.  NN  ->  ( M  gcd  ( M  x.  n )
)  =  M )  ->  ( M  e.  NN  ->  ( M  gcd  ( M  x.  (
n  +  1 ) ) )  =  M ) ) )
534, 8, 12, 16, 28, 52nnind 8729 . 2  |-  ( N  e.  NN  ->  ( M  e.  NN  ->  ( M  gcd  ( M  x.  N ) )  =  M ) )
5453impcom 124 1  |-  ( ( M  e.  NN  /\  N  e.  NN )  ->  ( M  gcd  ( M  x.  N )
)  =  M )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    = wceq 1331    e. wcel 1480   ` cfv 5118  (class class class)co 5767   CCcc 7611   1c1 7614    + caddc 7616    x. cmul 7618   NNcn 8713   ZZcz 9047   abscabs 10762    gcd cgcd 11624
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-nul 4049  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497  ax-cnex 7704  ax-resscn 7705  ax-1cn 7706  ax-1re 7707  ax-icn 7708  ax-addcl 7709  ax-addrcl 7710  ax-mulcl 7711  ax-mulrcl 7712  ax-addcom 7713  ax-mulcom 7714  ax-addass 7715  ax-mulass 7716  ax-distr 7717  ax-i2m1 7718  ax-0lt1 7719  ax-1rid 7720  ax-0id 7721  ax-rnegex 7722  ax-precex 7723  ax-cnre 7724  ax-pre-ltirr 7725  ax-pre-ltwlin 7726  ax-pre-lttrn 7727  ax-pre-apti 7728  ax-pre-ltadd 7729  ax-pre-mulgt0 7730  ax-pre-mulext 7731  ax-arch 7732  ax-caucvg 7733
This theorem depends on definitions:  df-bi 116  df-stab 816  df-dc 820  df-3or 963  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-nel 2402  df-ral 2419  df-rex 2420  df-reu 2421  df-rmo 2422  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-nul 3359  df-if 3470  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-tr 4022  df-id 4210  df-po 4213  df-iso 4214  df-iord 4283  df-on 4285  df-ilim 4286  df-suc 4288  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-riota 5723  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-recs 6195  df-frec 6281  df-sup 6864  df-pnf 7795  df-mnf 7796  df-xr 7797  df-ltxr 7798  df-le 7799  df-sub 7928  df-neg 7929  df-reap 8330  df-ap 8337  df-div 8426  df-inn 8714  df-2 8772  df-3 8773  df-4 8774  df-n0 8971  df-z 9048  df-uz 9320  df-q 9405  df-rp 9435  df-fz 9784  df-fzo 9913  df-fl 10036  df-mod 10089  df-seqfrec 10212  df-exp 10286  df-cj 10607  df-re 10608  df-im 10609  df-rsqrt 10763  df-abs 10764  df-dvds 11483  df-gcd 11625
This theorem is referenced by:  gcdmultiplez  11698  rpmulgcd  11703
  Copyright terms: Public domain W3C validator