ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  genpcdl Unicode version

Theorem genpcdl 7320
Description: Downward closure of an operation on positive reals. (Contributed by Jim Kingdon, 14-Oct-2019.)
Hypotheses
Ref Expression
genpelvl.1  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
genpelvl.2  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
genpcdl.2  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( 1st `  ( A F B ) ) ) )
Assertion
Ref Expression
genpcdl  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
Distinct variable groups:    x, y, z, f, g, h, w, v, A    x, B, y, z, f, g, h, w, v    x, G, y, z, f, g, h, w, v    f, F, g, h
Allowed substitution hints:    F( x, y, z, w, v)

Proof of Theorem genpcdl
StepHypRef Expression
1 ltrelnq 7166 . . . . . . 7  |-  <Q  C_  ( Q.  X.  Q. )
21brel 4586 . . . . . 6  |-  ( x 
<Q  f  ->  ( x  e.  Q.  /\  f  e.  Q. ) )
32simpld 111 . . . . 5  |-  ( x 
<Q  f  ->  x  e. 
Q. )
4 genpelvl.1 . . . . . . . . 9  |-  F  =  ( w  e.  P. ,  v  e.  P.  |->  <. { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 1st `  w )  /\  z  e.  ( 1st `  v
)  /\  x  =  ( y G z ) ) } ,  { x  e.  Q.  |  E. y  e.  Q.  E. z  e.  Q.  (
y  e.  ( 2nd `  w )  /\  z  e.  ( 2nd `  v
)  /\  x  =  ( y G z ) ) } >. )
5 genpelvl.2 . . . . . . . . 9  |-  ( ( y  e.  Q.  /\  z  e.  Q. )  ->  ( y G z )  e.  Q. )
64, 5genpelvl 7313 . . . . . . . 8  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) ) )
76adantr 274 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 1st `  ( A F B ) )  <->  E. g  e.  ( 1st `  A ) E. h  e.  ( 1st `  B ) f  =  ( g G h ) ) )
8 breq2 3928 . . . . . . . . . . . . 13  |-  ( f  =  ( g G h )  ->  (
x  <Q  f  <->  x  <Q  ( g G h ) ) )
98biimpd 143 . . . . . . . . . . . 12  |-  ( f  =  ( g G h )  ->  (
x  <Q  f  ->  x  <Q  ( g G h ) ) )
10 genpcdl.2 . . . . . . . . . . . 12  |-  ( ( ( ( A  e. 
P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  ->  ( x  <Q  (
g G h )  ->  x  e.  ( 1st `  ( A F B ) ) ) )
119, 10sylan9r 407 . . . . . . . . . . 11  |-  ( ( ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A
) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B
) ) )  /\  x  e.  Q. )  /\  f  =  (
g G h ) )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) )
1211exp31 361 . . . . . . . . . 10  |-  ( ( ( A  e.  P.  /\  g  e.  ( 1st `  A ) )  /\  ( B  e.  P.  /\  h  e.  ( 1st `  B ) ) )  ->  ( x  e. 
Q.  ->  ( f  =  ( g G h )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) ) )
1312an4s 577 . . . . . . . . 9  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  ( g  e.  ( 1st `  A )  /\  h  e.  ( 1st `  B ) ) )  ->  (
x  e.  Q.  ->  ( f  =  ( g G h )  -> 
( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) ) )
1413impancom 258 . . . . . . . 8  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( ( g  e.  ( 1st `  A
)  /\  h  e.  ( 1st `  B ) )  ->  ( f  =  ( g G h )  ->  (
x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) ) )
1514rexlimdvv 2554 . . . . . . 7  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( E. g  e.  ( 1st `  A
) E. h  e.  ( 1st `  B
) f  =  ( g G h )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
167, 15sylbid 149 . . . . . 6  |-  ( ( ( A  e.  P.  /\  B  e.  P. )  /\  x  e.  Q. )  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
1716ex 114 . . . . 5  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  e.  Q.  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) ) )
183, 17syl5 32 . . . 4  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  <Q  f  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) ) )
1918com34 83 . . 3  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  <Q  f  ->  ( x  <Q  f  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  x  e.  ( 1st `  ( A F B ) ) ) ) ) )
2019pm2.43d 50 . 2  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( x  <Q  f  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
2120com23 78 1  |-  ( ( A  e.  P.  /\  B  e.  P. )  ->  ( f  e.  ( 1st `  ( A F B ) )  ->  ( x  <Q  f  ->  x  e.  ( 1st `  ( A F B ) ) ) ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 103    <-> wb 104    /\ w3a 962    = wceq 1331    e. wcel 1480   E.wrex 2415   {crab 2418   <.cop 3525   class class class wbr 3924   ` cfv 5118  (class class class)co 5767    e. cmpo 5769   1stc1st 6029   2ndc2nd 6030   Q.cnq 7081    <Q cltq 7086   P.cnp 7092
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 603  ax-in2 604  ax-io 698  ax-5 1423  ax-7 1424  ax-gen 1425  ax-ie1 1469  ax-ie2 1470  ax-8 1482  ax-10 1483  ax-11 1484  ax-i12 1485  ax-bndl 1486  ax-4 1487  ax-13 1491  ax-14 1492  ax-17 1506  ax-i9 1510  ax-ial 1514  ax-i5r 1515  ax-ext 2119  ax-coll 4038  ax-sep 4041  ax-pow 4093  ax-pr 4126  ax-un 4350  ax-setind 4447  ax-iinf 4497
This theorem depends on definitions:  df-bi 116  df-3an 964  df-tru 1334  df-fal 1337  df-nf 1437  df-sb 1736  df-eu 2000  df-mo 2001  df-clab 2124  df-cleq 2130  df-clel 2133  df-nfc 2268  df-ne 2307  df-ral 2419  df-rex 2420  df-reu 2421  df-rab 2423  df-v 2683  df-sbc 2905  df-csb 2999  df-dif 3068  df-un 3070  df-in 3072  df-ss 3079  df-pw 3507  df-sn 3528  df-pr 3529  df-op 3531  df-uni 3732  df-int 3767  df-iun 3810  df-br 3925  df-opab 3985  df-mpt 3986  df-id 4210  df-iom 4500  df-xp 4540  df-rel 4541  df-cnv 4542  df-co 4543  df-dm 4544  df-rn 4545  df-res 4546  df-ima 4547  df-iota 5083  df-fun 5120  df-fn 5121  df-f 5122  df-f1 5123  df-fo 5124  df-f1o 5125  df-fv 5126  df-ov 5770  df-oprab 5771  df-mpo 5772  df-1st 6031  df-2nd 6032  df-qs 6428  df-ni 7105  df-nqqs 7149  df-ltnqqs 7154  df-inp 7267
This theorem is referenced by:  genprndl  7322
  Copyright terms: Public domain W3C validator