ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hashinfuni Unicode version

Theorem hashinfuni 10491
Description: The ordinal size of an infinite set is  om. (Contributed by Jim Kingdon, 20-Feb-2022.)
Assertion
Ref Expression
hashinfuni  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Distinct variable group:    y, A

Proof of Theorem hashinfuni
Dummy variable  z is distinct from all other variables.
StepHypRef Expression
1 omex 4477 . . . . . 6  |-  om  e.  _V
21snid 3526 . . . . 5  |-  om  e.  { om }
3 elun2 3214 . . . . 5  |-  ( om  e.  { om }  ->  om  e.  ( om  u.  { om }
) )
4 breq1 3902 . . . . . 6  |-  ( y  =  om  ->  (
y  ~<_  A  <->  om  ~<_  A ) )
54elrab3 2814 . . . . 5  |-  ( om  e.  ( om  u.  { om } )  -> 
( om  e.  {
y  e.  ( om  u.  { om }
)  |  y  ~<_  A }  <->  om  ~<_  A ) )
62, 3, 5mp2b 8 . . . 4  |-  ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  <->  om  ~<_  A )
76biimpri 132 . . 3  |-  ( om  ~<_  A  ->  om  e.  { y  e.  ( om  u.  { om }
)  |  y  ~<_  A } )
8 elrabi 2810 . . . . . . 7  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  e.  ( om  u.  { om } ) )
9 elun 3187 . . . . . . 7  |-  ( z  e.  ( om  u.  { om } )  <->  ( z  e.  om  \/  z  e. 
{ om } ) )
108, 9sylib 121 . . . . . 6  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  (
z  e.  om  \/  z  e.  { om } ) )
11 ordom 4490 . . . . . . . 8  |-  Ord  om
12 ordelss 4271 . . . . . . . 8  |-  ( ( Ord  om  /\  z  e.  om )  ->  z  C_ 
om )
1311, 12mpan 420 . . . . . . 7  |-  ( z  e.  om  ->  z  C_ 
om )
14 elsni 3515 . . . . . . . 8  |-  ( z  e.  { om }  ->  z  =  om )
15 eqimss 3121 . . . . . . . 8  |-  ( z  =  om  ->  z  C_ 
om )
1614, 15syl 14 . . . . . . 7  |-  ( z  e.  { om }  ->  z  C_  om )
1713, 16jaoi 690 . . . . . 6  |-  ( ( z  e.  om  \/  z  e.  { om } )  ->  z  C_ 
om )
1810, 17syl 14 . . . . 5  |-  ( z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  ->  z  C_ 
om )
1918adantl 275 . . . 4  |-  ( ( om  ~<_  A  /\  z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )  -> 
z  C_  om )
2019ralrimiva 2482 . . 3  |-  ( om  ~<_  A  ->  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z  C_  om )
21 ssunieq 3739 . . 3  |-  ( ( om  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  /\  A. z  e.  { y  e.  ( om  u.  { om } )  |  y  ~<_  A } z 
C_  om )  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
227, 20, 21syl2anc 408 . 2  |-  ( om  ~<_  A  ->  om  =  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A } )
2322eqcomd 2123 1  |-  ( om  ~<_  A  ->  U. { y  e.  ( om  u.  { om } )  |  y  ~<_  A }  =  om )
Colors of variables: wff set class
Syntax hints:    -> wi 4    <-> wb 104    \/ wo 682    = wceq 1316    e. wcel 1465   A.wral 2393   {crab 2397    u. cun 3039    C_ wss 3041   {csn 3497   U.cuni 3706   class class class wbr 3899   Ord word 4254   omcom 4474    ~<_ cdom 6601
This theorem was proved from axioms:  ax-mp 5  ax-1 6  ax-2 7  ax-ia1 105  ax-ia2 106  ax-ia3 107  ax-in1 588  ax-in2 589  ax-io 683  ax-5 1408  ax-7 1409  ax-gen 1410  ax-ie1 1454  ax-ie2 1455  ax-8 1467  ax-10 1468  ax-11 1469  ax-i12 1470  ax-bndl 1471  ax-4 1472  ax-13 1476  ax-14 1477  ax-17 1491  ax-i9 1495  ax-ial 1499  ax-i5r 1500  ax-ext 2099  ax-sep 4016  ax-nul 4024  ax-pow 4068  ax-pr 4101  ax-un 4325  ax-iinf 4472
This theorem depends on definitions:  df-bi 116  df-3an 949  df-tru 1319  df-nf 1422  df-sb 1721  df-clab 2104  df-cleq 2110  df-clel 2113  df-nfc 2247  df-ral 2398  df-rex 2399  df-rab 2402  df-v 2662  df-dif 3043  df-un 3045  df-in 3047  df-ss 3054  df-nul 3334  df-pw 3482  df-sn 3503  df-pr 3504  df-op 3506  df-uni 3707  df-int 3742  df-br 3900  df-tr 3997  df-iord 4258  df-suc 4263  df-iom 4475
This theorem is referenced by:  hashinfom  10492
  Copyright terms: Public domain W3C validator