ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbae Unicode version

Theorem hbae 1647
Description: All variables are effectively bound in an identical variable specifier. (Contributed by NM, 5-Aug-1993.) (Revised by NM, 3-Feb-2015.)
Assertion
Ref Expression
hbae  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )

Proof of Theorem hbae
StepHypRef Expression
1 ax12or 1444 . . . 4  |-  ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )
2 ax10o 1644 . . . . . 6  |-  ( A. x  x  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
32alequcoms 1450 . . . . 5  |-  ( A. z  z  =  x  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
4 ax10o 1644 . . . . . . . . 9  |-  ( A. x  x  =  y  ->  ( A. x  x  =  y  ->  A. y  x  =  y )
)
54pm2.43i 48 . . . . . . . 8  |-  ( A. x  x  =  y  ->  A. y  x  =  y )
6 ax10o 1644 . . . . . . . 8  |-  ( A. y  y  =  z  ->  ( A. y  x  =  y  ->  A. z  x  =  y )
)
75, 6syl5 32 . . . . . . 7  |-  ( A. y  y  =  z  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
87alequcoms 1450 . . . . . 6  |-  ( A. z  z  =  y  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
9 ax-4 1441 . . . . . . . 8  |-  ( A. x  x  =  y  ->  x  =  y )
109imim1i 59 . . . . . . 7  |-  ( ( x  =  y  ->  A. z  x  =  y )  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) )
1110sps 1471 . . . . . 6  |-  ( A. z ( x  =  y  ->  A. z  x  =  y )  ->  ( A. x  x  =  y  ->  A. z  x  =  y )
)
128, 11jaoi 669 . . . . 5  |-  ( ( A. z  z  =  y  \/  A. z
( x  =  y  ->  A. z  x  =  y ) )  -> 
( A. x  x  =  y  ->  A. z  x  =  y )
)
133, 12jaoi 669 . . . 4  |-  ( ( A. z  z  =  x  \/  ( A. z  z  =  y  \/  A. z ( x  =  y  ->  A. z  x  =  y )
) )  ->  ( A. x  x  =  y  ->  A. z  x  =  y ) )
141, 13ax-mp 7 . . 3  |-  ( A. x  x  =  y  ->  A. z  x  =  y )
1514a5i 1476 . 2  |-  ( A. x  x  =  y  ->  A. x A. z  x  =  y )
16 ax-7 1378 . 2  |-  ( A. x A. z  x  =  y  ->  A. z A. x  x  =  y )
1715, 16syl 14 1  |-  ( A. x  x  =  y  ->  A. z A. x  x  =  y )
Colors of variables: wff set class
Syntax hints:    -> wi 4    \/ wo 662   A.wal 1283    = wceq 1285
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 104  ax-ia2 105  ax-ia3 106  ax-io 663  ax-5 1377  ax-7 1378  ax-gen 1379  ax-ie2 1424  ax-8 1436  ax-10 1437  ax-11 1438  ax-i12 1439  ax-4 1441  ax-17 1460  ax-i9 1464  ax-ial 1468
This theorem depends on definitions:  df-bi 115
This theorem is referenced by:  nfae  1648  hbaes  1649  hbnae  1650  dral1  1659  dral2  1660  drex2  1661  drex1  1720  aev  1734  sbcomxyyz  1888  exists1  2038
  Copyright terms: Public domain W3C validator