ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbal Unicode version

Theorem hbal 1234
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1
Assertion
Ref Expression
hbal

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3
21alimi 1213 . 2
3 ax-7 1206 . 2
42, 3syl 13 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1204
This theorem is referenced by:  hba2  1309  nfal  1331  aaan  1336  hbex  1369  pm11.53  1583  cbval2  1602  cbvald  1606  euf  1692  mo  1702  2mo  1759  2eu3  1763  19.12vv  1794
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1205  ax-7 1206  ax-gen 1207
  Copyright terms: Public domain W3C validator