ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbal Structured version   Unicode version

Theorem hbal 1324
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1
Assertion
Ref Expression
hbal

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3
21alimi 1303 . 2
3 ax-7 1296 . 2
42, 3syl 13 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1294
This theorem is referenced by:  hba2  1405  nfal  1428  aaan  1438  hbex  1484  pm11.53  1726  cbval2  1745  euf  1851  hbral  2254
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1295  ax-7 1296  ax-gen 1297
  Copyright terms: Public domain W3C validator