ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbal Unicode version

Theorem hbal 1296
Description: If is not free in , it is not free in . (Contributed by NM, 5-Aug-1993.)
Hypothesis
Ref Expression
hbal.1
Assertion
Ref Expression
hbal

Proof of Theorem hbal
StepHypRef Expression
1 hbal.1 . . 3
21alimi 1275 . 2
3 ax-7 1268 . 2
42, 3syl 13 1
Colors of variables: wff set class
Syntax hints:   wi 4  wal 1266
This theorem is referenced by:  hba2  1375  nfal  1398  aaan  1404  hbex  1440  pm11.53  1657  cbval2  1676  cbvald  1680  euf  2081  mo  2091  2mo  2148  2eu3  2152  19.12vv  2174
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1267  ax-7 1268  ax-gen 1269
  Copyright terms: Public domain W3C validator