ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  hbald Unicode version

Theorem hbald 1396
Description: Deduction form of bound-variable hypothesis builder hbal 1382. (Contributed by NM, 2-Jan-2002.)
Hypotheses
Ref Expression
hbald.1  |-  ( ph  ->  A. y ph )
hbald.2  |-  ( ph  ->  ( ps  ->  A. x ps ) )
Assertion
Ref Expression
hbald  |-  ( ph  ->  ( A. y ps 
->  A. x A. y ps ) )

Proof of Theorem hbald
StepHypRef Expression
1 hbald.1 . . 3  |-  ( ph  ->  A. y ph )
2 hbald.2 . . 3  |-  ( ph  ->  ( ps  ->  A. x ps ) )
31, 2alimdh 1372 . 2  |-  ( ph  ->  ( A. y ps 
->  A. y A. x ps ) )
4 ax-7 1353 . 2  |-  ( A. y A. x ps  ->  A. x A. y ps )
53, 4syl6 33 1  |-  ( ph  ->  ( A. y ps 
->  A. x A. y ps ) )
Colors of variables: wff set class
Syntax hints:    -> wi 4   A.wal 1257
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-5 1352  ax-7 1353  ax-gen 1354
This theorem is referenced by:  nfald  1659  dvelimfALT2  1714
  Copyright terms: Public domain W3C validator