ILE Home Intuitionistic Logic Explorer < Previous   Next >
Nearby theorems
Mirrors  >  Home  >  ILE Home  >  Th. List  >  ialgrlem1st Unicode version

Theorem ialgrlem1st 10264
Description: Lemma for ialgr0 10266. Expressing algrflemg 5879 in a form suitable for theorems such as iseq1 9386 or iseqfn 9385. (Contributed by Jim Kingdon, 22-Jul-2021.)
Hypothesis
Ref Expression
ialgrlem1st.f  |-  ( ph  ->  F : S --> S )
Assertion
Ref Expression
ialgrlem1st  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )

Proof of Theorem ialgrlem1st
StepHypRef Expression
1 algrflemg 5879 . . 3  |-  ( ( x  e.  S  /\  y  e.  S )  ->  ( x ( F  o.  1st ) y )  =  ( F `
 x ) )
21adantl 266 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  =  ( F `
 x ) )
3 ialgrlem1st.f . . . 4  |-  ( ph  ->  F : S --> S )
43adantr 265 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  F : S --> S )
5 simprl 491 . . 3  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  ->  x  e.  S )
64, 5ffvelrnd 5331 . 2  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( F `  x
)  e.  S )
72, 6eqeltrd 2130 1  |-  ( (
ph  /\  ( x  e.  S  /\  y  e.  S ) )  -> 
( x ( F  o.  1st ) y )  e.  S )
Colors of variables: wff set class
Syntax hints:    -> wi 4    /\ wa 101    = wceq 1259    e. wcel 1409    o. ccom 4377   -->wf 4926   ` cfv 4930  (class class class)co 5540   1stc1st 5793
This theorem was proved from axioms:  ax-1 5  ax-2 6  ax-mp 7  ax-ia1 103  ax-ia2 104  ax-ia3 105  ax-io 640  ax-5 1352  ax-7 1353  ax-gen 1354  ax-ie1 1398  ax-ie2 1399  ax-8 1411  ax-10 1412  ax-11 1413  ax-i12 1414  ax-bndl 1415  ax-4 1416  ax-13 1420  ax-14 1421  ax-17 1435  ax-i9 1439  ax-ial 1443  ax-i5r 1444  ax-ext 2038  ax-sep 3903  ax-pow 3955  ax-pr 3972  ax-un 4198
This theorem depends on definitions:  df-bi 114  df-3an 898  df-tru 1262  df-nf 1366  df-sb 1662  df-eu 1919  df-mo 1920  df-clab 2043  df-cleq 2049  df-clel 2052  df-nfc 2183  df-ral 2328  df-rex 2329  df-v 2576  df-sbc 2788  df-un 2950  df-in 2952  df-ss 2959  df-pw 3389  df-sn 3409  df-pr 3410  df-op 3412  df-uni 3609  df-br 3793  df-opab 3847  df-mpt 3848  df-id 4058  df-xp 4379  df-rel 4380  df-cnv 4381  df-co 4382  df-dm 4383  df-rn 4384  df-res 4385  df-ima 4386  df-iota 4895  df-fun 4932  df-fn 4933  df-f 4934  df-fo 4936  df-fv 4938  df-ov 5543  df-1st 5795
This theorem is referenced by:  ialgr0  10266  ialgrf  10267  ialgrp1  10268
  Copyright terms: Public domain W3C validator